From Deterministic to Probabilistic Rough Sets

Wojciech Ziarko

University of Regina Computer Science Saskatchewan, Canada

ziarko@sasktel.net

May 14, 2024

Overview

Original Rough Sets

• Classification and Decision Tables

2 Variable Precision Rough Sets

- Single Parameter Variable Precision Rough Sets
- Two Parameter Variable Precision Rough Sets

Probabilistic Rough Sets

- Bayesian Rough Sets
- Probabilistic Decision Tables
- Probabilistic Rules
- Evaluation of Decision Tables

Optimization of Decision Tables

• Attribute Reduction and Significance

- Introduced by late Professor Zdzislaw Pawlak
- Collection of objects or observations of interest: universe *U*, assumed finite, but can be generalized to infinite
- Classification knowledge, an ability to define categories (not necessarily data-based), represented by an equivalence *indiscernibility* relation: R ⊆ U × U
- Elementary sets collection, assumed finite: $R^* = \{E_1, E_2, ..., E_n\}$
- Approximation space: (U, R)

- It is not possible, in general, to form precise discriminating definition, in terms of the available classification knowledge, of an arbitrary set $X \subseteq U$
- Some sets (sometimes called concepts) can never be defined, or learned, with a given classification knowledge
- At the best, only approximate definitions can be created, or learned
- Sets for which discriminating definitions do not exist are called *undefinable*, or *rough*

Pawlak Rough Sets: Rough Approximations of Sets

Lower approximation:

$$\underline{R}(X) = \cup \{E \in R^* : E \subseteq X\}$$

• Upper approximation:

$$\overline{R} = \cup \{E \in R^* : E \cap X \neq \emptyset\}$$

Disjoint approximation regions:

• Positive region:

$$POS(X) = \cup \{E \in R^* : E \subseteq X\}$$

Negative region:

$$NEG(X) = \cup \{E \in R^* : E \cap X = \emptyset\}$$

Boundary region:

 $BND(X) = \bigcup \{ E \in R^* : E \cap X \neq \emptyset \land E \not\subseteq X \} \in \mathbb{R}$ From Deterministic to Probabilistic RS May 14, 2024 5/44

Wojciech Ziarko (UofR)

- If $BND(X) = \emptyset$ then X is definable
- Elementary sets and approximation are definable and disjoint
- A rough set X is approximately defined by specifying definitions of its approximation regions POS(X), NEG(X) and BND(X)
- This can be done in a tabular form by creating a rough decision table
- The approximation space is defined via classification of objects, collected in a *classification table*, based on identity of values of their *attributes*

Classification Table: Representation of Instances

Obj	HRate	BP	Temp	Treatm	Response
e_1	High	High	High	1	Positive
e ₂	High	High	High	1	Negative
e ₃	High	High	Normal	2	Negative
e_4	High	Normal	High	1	Positive
<i>e</i> 5	High	Normal	High	1	Positive
e_6	Normal	Normal	Normal	3	Positive
e ₇	Normal	Normal	Normal	3	Negative
<i>e</i> ₈	Low	High	High	1	Negative
<i>e</i> 9	Low	High	High	1	Negative
e_{10}	Low	High	Normal	2	Positive
e_{11}	Low	High	Normal	2	Negative
e_{12}	High	Normal	High	2	Negative
e ₁₃	Normal	Normal	Normal	1	Positive

Table: Classification Table of medical records

HRate	BP	Temp	Treatment	Appr Region
High	High	High	1	BND
High	High	Normal	2	NEG
High	Normal	High	1	POS
Normal	Normal	Normal	3	BND
Low	High	High	1	NEG
Low	High	Normal	2	BND
High	Normal	High	2	NEG
Normal	Normal	Normal	1	POS

Table: Rough Decision Table representation of the rough set: **Response=Positive**

- From data, based on analysis and pre-processing of existing data: data mining, most common
- Based on prior human expert knowledge: expert specifies the classes of rough decision table
- Through learning from individual observations using pre-selected training data: objects, cases, instances
- The decision tables acquired from data are likely to be incomplete, due to the nature of learning from data

- Analysis of dependencies occurring in the decision table: functional, partial functional
- Reduction elimination of redundant or unrelated parts of the decision, such as:
 - Elimination of redundant columns (attribute reducts)
 - Elimination of redundant values (value reducts)
- Significance analysis of individual attributes
- Formation of minimal length, that is, most generalized predictive rules

- Imperfections of practical application data
- Presence of measurement noise
- Lack of consistency
- Extensive boundary regions
- Inter-data relationships are often probabilistic in nature, rather than deterministic
- Difficulty in creating any deterministic predictive rules or models from data

- An attempt to create "softer" rough sets, more applicable to real world problems and imperfect data
- To utilize frequency distribution info in data when creating decision tables and rules (*probabilistic knowledge*)
- To allow for use of subjective probabilities obtained from human experts
- To enhance the scope of applications of rough set theory fundamental ideas

Single Parameter Variable Precision Model of Rough Sets

• Misclassification degree of set X with respect to Y:

$$c(X,Y) = 1 - \frac{card(X \cap Y)}{card(X)} = \frac{card(X \cap -Y)}{card(X)} = P(\neg Y|X)$$

if $card(X) > 0$ and $c(X,Y) = 0$ if $card(X) = 0$

The partial majority inclusion of the set X within Y:
 Y ⊇^β X if and only if c(X, Y) ≤ β with 0 ≤ β < 0.5

Example:

Let
$$U = \{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8\}$$
, $X = \{x_1, x_2, x_3, x_4\}$ and $Y = \{x_1, x_2, x_3, x_8\}$. Then $\neg Y = \{x_4, x_5, x_6, x_7\}$ giving $Y \supseteq^{0.25} X$

Lower approximation

 $\underline{R}_{\beta}(X) = \bigcup \{ E \in R^* : c(E, X) \leq \beta \} = \bigcup \{ E \in R^* : X \supseteq^{\beta} E \}$

Upper approximation

$$\overline{R}_{eta}(X) = \bigcup \{E \in R^* : c(E,X) < 1 - eta\}$$

• Negative region

$$NEGR_{\beta}(X) = \bigcup \{E \in R^* : c(E, X) \ge 1 - \beta\}$$

Boundary region

$$BNR_{\beta}(X) = \bigcup \{E \in R^* : \beta < c(E, X) < 1 - \beta\}$$

나 비금 비 비금

э

▲ 同 ▶ → 三 ▶

Variable Precision Rough Sets: Asymetric Bounds

- Two parameters used to control approximation regions
- Lower and upper limit $0 \le l < u \le 1$
- Lower approximation

$$\underline{R}_{I}(X) = \bigcup \{ E \in R^{*} : c(E, X) \leq I \}$$

Upper approximation

$$\overline{R}_u(X) = \bigcup \{E \in R^* : c(E,X) < u\}$$

• Negative region

$$NEGR_u(X) = \bigcup \{E \in R^* : c(E, X) \ge u\}$$

Boundary region

$$BNR_{l,u}(X) = \bigcup \{ E \in R^* : l < c(E, X) < u \}$$

When l = 0 and u = 1, the above definitions reduce to the original rough sets approximation regions (check)

Example: A Classification Table of Finishing Mill Data

Situation	Width	Gauge	Result
<i>e</i> ₁	Wide	Heavy	Good
e2	Wide	Heavy	Bad
e ₃	Wide	Medium	Bad
e4	Wide	Medium	Good
e5	Wide	Thin	Bad
e ₆	Wide	Thin	Bad
e ₇	Narrow	Heavy	Bad
e ₈	Narrow	Heavy	Good
e9	Narrow	Medium	Good
e10	Narrow	Medium	Good
e ₁₁	Narrow	Thin	Good
e ₁₂	Narrow	Thin	Good
e ₁₃	Wide	Heavy	Good
e ₁₄	Wide	Heavy	Good
e ₁₅	Wide	Medium	Good
e ₁₆	Wide	Thin	Good
e ₁₇	Wide	Thin	Good
e ₁₈	Narrow	Heavy	Good
e19	Narrow	Heavy	Good
e ₂₀	Narrow	Medium	Bad
e ₂₁	Narrow	Thin	Bad
enn	Narrow	Thin	Bad

Condition attributes: $C = \{Width, Gauge\}$

Approximation Space Based on Width and Gauge

Condition Classes Forming Approximation Space:

- (Width := Wide)AND(Gauge := Heavy) with $C_1 = \{1, 2, 13, 14\}$,
- Width := Wide)AND(Gauge := Medium) with $C_2 = \{3, 4, 15\}$,
- (*Width* := *Wide*)*AND*(*Gauge* := *Thin*) with $C_3 = \{5, 6, 16, 17\}$,
- (Width := Narrow)AND(Gauge := Heavy) with $C_4 = \{7, 8, 18, 19\}$,
- (Width := Narrow)AND(Gauge := Medium) with $C_5 = \{9, 10, 20\}$, (Width := Narrow)AND(Gauge := Thin) with $C_6 = \{11, 12, 21, 22\}$.

Decision Classes:

• (*Result* := *Good*) with
$$D_1 = \{1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$$

• (*Result* := **Bad**) with $D_2 = \{2, 3, 5, 6, 7, 20, 21, 22\}$.

 $\underline{C}(D_2) = \emptyset$ then no deterministic decision rule exists for (*Result* := **Bad**)

$$\begin{aligned} c(C_1, D_2) &= 0.75, \ c(C_2, D_2) = 0.67, \ c(C_3, D_2) = 0.5\\ c(C_4, D_2) &= 0.75, \ c(C_5, D_2) = 0.67, \ c(C_6, D_2) = 0.5\\ \underline{C}_{0.6}(D_2) &= \bigcup \{C_i \in C^* : c(C_i, D_2) \le 0.6\} = \bigcup \{C_3, C_6\} \end{aligned}$$

The above means that non-deterministic rule exists for (*Result* := **Bad**)

$$BNC_{0.6,0.7}(D_2) = \bigcup \{C_i \in C^* : 0.6 < c(C_i, D_2) < 0.7\} = \bigcup \{C_2, C_5\}$$

$$\overline{C}_{0.7}(D_2) = \bigcup \{ C_i \in C^* : c(C_i, D_2) < 0.7 \} = \bigcup \{ C_2, C_3, C_5, C_6 \}$$
$$NEGC_{0.7}(D_2) = \bigcup \{ C_i \in C^* : c(C_i, D_2) \ge 0.7 \} = \bigcup \{ C_1, C_4 \}$$

Probabilistic Rough Sets

• Rough set X prior probability, representing the probability of occurrence of X, in the absence of any other information:

$$P(X) = \frac{card(X)}{card(U)}$$

with the assumption 0 < P(X) < 1

• Elementary set *E* prior probability:

$$P(E) = \frac{card(E)}{card(U)}$$
(2)

with the assumption 0 < P(E) < 1

• Conditional occurrence probability of the rough set X within elementary set E:

$$P(X|E) = \frac{card(X \cap E)}{card(E)},$$
(3)

• if *U* if infinite, the set measure theory can be used to substitute for cardinalities

Wojciech Ziarko (UofR)

(1)

Probabilistic Approximation Regions 1

- Based on the degree deviation of conditional probabilities from prior probability rather than presence or absence of a set inclusion
- Approximation regions characterize areas with *significantly* increased, *significantly* decreased, or approximately unchanged rough set X occurrence probability in relation to prior probability
- The approximation regions are defined in terms of two *precision control* parameters:
- The upper limit *u* and the lower limit *l*, with the constraint:

$$0 \le l < P(X) < u \le 1 \tag{4}$$

• The upper and lower limit parameters give precise meaning of the terms *significantly* decreased, or *significantly* increased rough set X occurrence probability

Probabilistic Approximation Regions 2

• Positive region:

$$POS_u(X) = \cup \{E : 0 < P(X) < u \le P(X|E) \le 1\}.$$
 (5)

Negative region:

$$NEG_{l}(X) = \cup \{E : 0 \le P(X|E) \le l < P(X) < 1\}.$$
 (6)

Boundary region

$$BND_{l,u}(X) = \cup \{E : l < P(X|E) < u\}.$$
 (7)

• When *l* = 0 and *u* = 1, the above definitions reduce to the original rough sets approximation regions

Probabilistic Rough Sets in the Limit: Bayesian Rough Sets

• The lower and upper limit parameters are constrained by

$$0 \le l < P(X) < u \le 1 \tag{8}$$

• When both I and u approach P(X), $I \rightarrow P(X)$ and $P(X) \leftarrow u$ then:

$$POS_u(X) \to POS^*(X) = \cup \{E : 0 < P(X) < P(X|E) \le 1\}$$
 (9)

$$NEG_u(X) \to NEG^*(X) = \cup \{E : 0 \le P(X|E) < P(X) < 1\}$$
 (10)

 $BND_{l,u}(X) \to BND^*(X) = \cup \{E : 0 < P(X|E) = P(X) < 1\}.$ (11)

- The limit approximation regions are called Absolute Approximation Regions
- They provide the basis of Bayesian Rough Set model

- A rough set X is probabilistically defined by specifying definitions of its approximation regions elementary sets and their probabilistic relations to the rough set
- This can be done in a tabular form by creating a *probabilistic decision table*

Classification Table

Obj	HRate	BP	Temp	Treatm	Response
e_1	High	High	High	1	Positive
e ₂	High	High	High	1	Negative
e ₃	High	High	Normal	2	Negative
e_4	High	Normal	High	1	Positive
<i>e</i> 5	High	Normal	High	1	Positive
e_6	Normal	Normal	Normal	3	Positive
e ₇	Normal	Normal	Normal	3	Negative
<i>e</i> ₈	Low	High	High	1	Negative
<i>e</i> 9	Low	High	High	1	Negative
e_{10}	Low	High	Normal	2	Positive
e_{11}	Low	High	Normal	2	Negative
e_{12}	High	Normal	High	2	Negative
e ₁₃	Normal	Normal	Normal	1	Positive

Table: Classification Table of medical records

æ

< □ > < □ > < □ > < □ > < □ > < □ >

BP	Temp	Treatment	Region	$P(E_i)$	$P(X E_i)$
High	High	1	BND	0.0520	0.78
High	Normal	2	NEG	0.1354	0.02
Normal	High	1	POS	0.1562	0.99
Normal	Normal	3	BND	0.1562	0.36
High	High	1	NEG	0.1406	0.11
High	Normal	2	BND	0.1093	0.41
Normal	High	2	NEG	0.1562	0.27
Normal	Normal	1	POS	0.0941	0.85
	BP High High Vormal Vormal High High Vormal	BPTempHighHighHighNormalNormalHighNormalNormalHighHighHighNormalNormalHighNormalHigh	BPTempTreatmentHighHigh1HighNormal2NormalHigh1NormalNormal3HighHigh1HighNormal2NormalHigh2NormalNormal1	BPTempTreatmentRegionHighHigh1BNDHighNormal2NEGNormalHigh1POSNormalNormal3BNDHighHigh1NEGHighNormal2BNDNormalHigh2NEGNormalHigh1POS	BPTempTreatmentRegion $P(E_i)$ HighHigh1BND0.0520HighNormal2NEG0.1354NormalHigh1POS0.1562NormalNormal3BND0.1562HighHigh1NEG0.1406HighNormal2BND0.1093NormalHigh2NEG0.1562NormalHigh1POS0.0941

Table: Probabilistic decision table with l = 0.3, u = 0.8, P(X) = 0.4366 of *Response* := **Positive**

- The Probabilistic rule $r_{X|Y}$ is an expression: $des(Y) \rightarrow s(X)$
- Y is a definable set with a defining description des(Y)
- The description des(Y) is a conjunction of attribute-value pairs
- X is a rough set referenced by s(X)
 - Three kinds of rules:
 - Positive rule: $Y \subseteq POS_u(X)$
 - Negative rule: $Y \subseteq NEG_{I}(X)$
 - Boundary rule: $Y \subseteq BND_{l,u}(X)$
- Rules corresponding to elementary sets E are elementary rules
- In practice, minimal length rules are of most interest

BP	Temp	Treatment	Region	$P(E_i)$	$P(X E_i)$
High	High	1	BND	0.0520	0.78
High	Normal	2	NEG	0.1354	0.02
Normal	High	1	POS	0.1562	0.99
Normal	Normal	3	BND	0.1562	0.36
High	High	1	NEG	0.1406	0.11
High	Normal	2	BND	0.1093	0.41
Normal	High	2	NEG	0.1562	0.27
Normal	Normal	1	POS	0.0941	0.85
	BP High High Normal High High Normal Normal	BPTempHighHighHighNormalNormalHighNormalHighHighHighHighNormalNormalHighNormalHighNormalNormalNormalNormal	BPTempTreatmentHighHigh1HighNormal2NormalHigh1NormalNormal3HighHigh1HighNormal2NormalHigh2NormalNormal1	BPTempTreatmentRegionHighHigh1BNDHighNormal2NEGNormalHigh1POSNormalNormal3BNDHighHigh1NEGHighNormal2BNDNormalHigh1NEGNormalHigh1NEGNormalHigh1POS	BPTempTreatmentRegion $P(E_i)$ HighHigh1BND0.0520HighNormal2NEG0.1354NormalHigh1POS0.1562NormalNormal3BND0.1562HighHigh1NEG0.1406HighNormal2BND0.1093NormalHigh2NEG0.1562NormalHigh1POS0.1093NormalHigh1POS0.0941

- Correspond to *value reducts* of rough set theory
- Are maximally general (strong data support)
- Example: $\textit{BP} = \textit{Normal} \land \textit{Treatment} = 1 \rightarrow \textit{PositiveResponse}$

- The rule $r_{X|Y}$ certainty parameter defined as the conditional probability $cert(r_{X|Y}) = P(X|Y)$
- The rule $r_{X|Y}$ generality (support, strength) parameter defined as the probability $gen(r_{X|Y}) = P(Y)$
- The rule certainty gain parameter $gain(r_{X|Y}) = |P(X|Y) P(X)|$
- For all positive rules: $u \leq cert(r_{X|Y})$
- For all negative rules: $cert(r_{X|Y}) \leq l$

Rule Evaluative Measures

- The rules and the evaluative measures can be computed from the probabilistic decision table
- Rule certainty:

$$cert(r_{X|Y}) = \frac{\sum_{E \subseteq Y} P(E) P(X|E)}{\sum_{E \subseteq Y} P(E)} \}$$

Rule generality:

$$gen(r_{X|Y}) = \sum_{E \subseteq Y} P(E) \}$$

• Certainty gain:

$$gain(r_{X|Y}) = \frac{\left|\sum_{E \subseteq Y} P(E) P(X|E) - P(X) \sum_{E \subseteq Y} P(E)\right|}{\sum_{E \subseteq Y} P(E)}$$

HRate	BP	Temp	Treatment	Region	$P(E_i)$	$P(X E_i)$
High	High	High	1	BND	0.0520	0.78
High	High	Normal	2	NEG	0.1354	0.02
High	Normal	High	1	POS	0.1562	0.99
Normal	Normal	Normal	3	BND	0.1562	0.36
Low	High	High	1	NEG	0.1406	0.11
Low	High	Normal	2	BND	0.1093	0.41
High	Normal	High	2	NEG	0.1562	0.27
Normal	Normal	Normal	1	POS	0.0941	0.85

• P(X) = 0.4366

 BP = Normal ∧ Treatment = 1 → PositiveResponse Generality = 0.2503, Certainty = 0.9374, CertaintyGain = 0.5008

Evaluation of Decision Tables: Dependency Measures

- The focus is on partial functional and probabilistic dependencies
- They capture the quality of approximation of the rough set X in terms of the elementary sets of the approximation space
- Parametric partial functional measure, γ_{l,u}(X|C), is a variable precision generalization of Pawlak's partial functional dependency measure:

$$\gamma_{I,u}(X|C) = P(POS_u(X|C) \cup NEG_I(X|C))$$

where C is a set of condition attributes.

- It represents the relative degree of accuracy of approximation of a rough set \boldsymbol{X}
- It can be computed directly from probabilistic decision table by:

$$\gamma_{I,u}(X|C) = \sum_{E \subseteq POS_u(X|C) \cup NEG_I(X|C)} P(E)$$

• Parametric partial functional measure, $\gamma_{l,u}(X|C)$ becomes partial functional dependency measure $\gamma(X|C)$ when l = 0 and u = 1:

$$\gamma(X|C) = \gamma_{0,1}(X|C) = \sum_{E \subseteq POS_1(X|C) \cup NEG_0(X|C)} P(E)$$

- Approximation regions POS, BND and NEG are definable and disjoint
- The dependency between condition attributes *C* and the attribute *Region* is functional

- Monotonicity is a property of a dependency which ensures that the dependency will not decrease with the addition of an attribute
- It allows for efficient computation (linear in the number of attributes) of a minimal subset of attributes preserving the dependency, called *attribute reduct*

Theorem (Monotonicity of Partial Functional Dependency)

Let $B \subset C$ be a subset of condition attributes on U and let "a" be any condition attribute. Then the following relation holds:

 $\gamma(X|B) \leq \gamma(X|B \cup \{a\})$

Parametric Probabilistic Dependencies

- The probabilistic dependency represents a degree of probabilistic dependency between classification formed by condition attributes and the classification {X, ¬X}
- The parametric probabilistic dependency, λ dependency, is a normalized expected maximum degree of deviation of the probability of the rough set P(X|E), or P(¬X|E), from the prior probability of the rough set P(X), or from the prior probability of the rough set P(¬X), respectively:

$$\lambda_{l,u}(X|C) = \frac{\sum_{E \subseteq POS_u(X|C) \cup NEG_l(X|C)} P(E)|P(X|E) - P(X)|}{P(POS_u(X|C))P(\neg X) + P(NEG_l(X|C))P(X)}$$

- The higher deviation reflects stronger probabilistic connection between elementary set *E* and the rough set *X*
- If all elementary sets *E* are probabilistically independent from rough set *X*, that is, if $P(X \cap E) = P(X)P(E)$, then $\lambda_{l,u}(X|C) = 0$

Probabilistic Dependencies in Bayesian Model

• To evaluate and optimize probabilistic decision tables derived in the framework of Bayesian Rough Set model, the non-parametric probabilistic dependency (probabilistic dependency), λ – Dependency, can be used:

$$\lambda(X|C) = \frac{\sum_{E \in U/C} P(E)|P(X|E) - P(X)|}{2P(X)(1 - P(X))}$$
(12)

- It represents the average degree of probabilistic dependency between elementary sets corresponding to combinations of attribute values and rough set *X*
- If all elementary sets *E* are probabilistically independent from rough set *X*, then λ(*X*|*C*) = 0
- It can be computed directly from the probabilistic decision table
- It is monotonic

Wojciech Ziarko (UofR)

Theorem (Monotonicity of Probabilistic Dependency)

Let $B \subseteq C$ be a subset of condition attributes on U and let "a" be any condition attribute. Then the following relation holds:

$$\lambda(X|B) \le \lambda(X|B \cup \{a\}) \tag{13}$$

• It allows for efficient procedure for decision table optimization and analysis of significance of attributes

Minimal subset of attributes RED ⊆ C preserving γ(Region|C) = 1 is called functional reduct:

$$\gamma(\text{Region}|\text{RED}) = 1$$
 (14)

and for any attribute $a \in RED$:

$$\gamma(\operatorname{Region}|\operatorname{RED} - \{a\}) < 1 \tag{15}$$

 After reduction, some elementary sets may combine requiring re-computation of P(E) and P(X|E)

HRate	BP	Temp	Treatment	Region	$P(E_i)$	$P(X E_i)$
High	High	High	1	BND	0.0520	0.78
High	High	Normal	2	NEG	0.1354	0.02
High	Normal	High	1	POS	0.1562	0.99
Normal	Normal	Normal	3	BND	0.1562	0.36
Low	High	High	1	NEG	0.1406	0.11
Low	High	Normal	2	BND	0.1093	0.41
High	Normal	High	2	NEG	0.1562	0.27
Normal	Normal	Normal	1	POS	0.0941	0.85

- The functional reduct is (HRate, BP, Treatments)
- The attribute Temp can be eliminated

HRate	BP	Treatment	Region	$P(E_i)$	$P(X E_i)$
High	High	1	BND	0.0520	0.78
High	High	2	NEG	0.1354	0.02
High	Normal	1	POS	0.1562	0.99
Normal	Normal	3	BND	0.1562	0.36
Low	High	1	NEG	0.1406	0.11
Low	High	2	BND	0.1093	0.41
High	Normal	2	NEG	0.1562	0.27
Normal	Normal	1	POS	0.0941	0.85

 Minimal subset of attributes preserving either the non-parametric *γ* - dependency or *λ* - dependency), called reduct, or probabilistic reduct, respectively, *RED*):

$$\lambda(X|RED) = \lambda(X|C) \tag{16}$$

and for any attribute $a \in RED$:

$$\lambda(X|RED - \{a\}) < \lambda(X|RED) \tag{17}$$

Similarly for the partial functional dependencies

Significance and Core of Attributes

- Determining the contribution of individual reduct *RED* attributes to the dependency in question via their *significance* analysis
- Can be done by evaluating the relative decrease of dependency due to removal of an attribute *a* from the reduct *RED*:

$$sig_{RED}(a) = rac{\lambda(X|RED) - \lambda(X|RED - \{a\})}{\lambda(X|RED)} > 0$$
 (18)

- Finding the subset of most essential attributes with respect to the probabilistic dependency, the ones contained in ALL reducts called *core* attributes
- Any core attribute {a} satisfies the following inequality:

$$\lambda(X|C) > \lambda(X|C - \{a\}).$$
(19)

• Similarly for the non-parametric partial functional dependency

- The problem of converting precise numeric values into general qualitative values
- Value Range-based discretization is not good possible formation of spurious new combinations
- Development of methods for avoiding *overfitting* and for reliable estimates of probabilities
- Reduction of combinatorial complexity: minimizing the number of attributes and their values
- Use of classification hierarchy
- Dealing with incomplete observations
- Developing applications: finance, medicine, pharmacy, control, pattern classification

Thank You!

Image: A math a math