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Pawlak Rough Sets: Approximation Space

Introduced by late Professor Zdzislaw Pawlak

Collection of objects or observations of interest: universe U, assumed
finite, but can be generalized to infinite

Classification knowledge, an ability to define categories (not
necessarily data-based), represented by an equivalence indiscernibility
relation: R ⊆ U × U

Elementary sets collection, assumed finite: R∗ = {E1,E2, ...,En}
Approximation space: (U,R)
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Pawlak Rough Sets: Undefinable Sets

It is not possible, in general, to form precise discriminating definition,
in terms of the available classification knowledge, of an arbitrary set
X ⊆ U

Some sets (sometimes called concepts) can never be defined, or
learned, with a given classification knowledge

At the best, only approximate definitions can be created, or learned

Sets for which discriminating definitions do not exist are called
undefinable, or rough
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Pawlak Rough Sets: Rough Approximations of Sets

Lower approximation:

R(X ) = ∪{E ∈ R∗ : E ⊆ X}
Upper approximation:

R = ∪{E ∈ R∗ : E ∩ X 6= ∅}
Disjoint approximation regions:

Positive region:

POS(X ) = ∪{E ∈ R∗ : E ⊆ X}
Negative region:

NEG (X ) = ∪{E ∈ R∗ : E ∩ X = ∅}
Boundary region:

BND(X ) = ∪{E ∈ R∗ : E ∩ X 6= ∅ ∧ E * X}
Wojciech Ziarko (UofR) From Deterministic to Probabilistic RS May 14, 2024 5 / 44



Pawlak Rough Sets: Rough Approximations of Sets

If BND(X ) = ∅ then X is definable

Elementary sets and approximation are definable and disjoint

A rough set X is approximately defined by specifying definitions of its
approximation regions POS(X ), NEG (X ) and BND(X )

This can be done in a tabular form by creating a rough decision table

The approximation space is defined via classification of objects,
collected in a classification table, based on identity of values of their
attributes
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Classification Table: Representation of Instances

Obj HRate BP Temp Treatm Response
e1 High High High 1 Positive
e2 High High High 1 Negative
e3 High High Normal 2 Negative
e4 High Normal High 1 Positive
e5 High Normal High 1 Positive
e6 Normal Normal Normal 3 Positive
e7 Normal Normal Normal 3 Negative
e8 Low High High 1 Negative
e9 Low High High 1 Negative
e10 Low High Normal 2 Positive
e11 Low High Normal 2 Negative
e12 High Normal High 2 Negative
e13 Normal Normal Normal 1 Positive

Table: Classification Table of medical records

Wojciech Ziarko (UofR) From Deterministic to Probabilistic RS May 14, 2024 7 / 44



Rough Decision Table: Representation of Classes

HRate BP Temp Treatment Appr Region

High High High 1 BND
High High Normal 2 NEG
High Normal High 1 POS

Normal Normal Normal 3 BND
Low High High 1 NEG
Low High Normal 2 BND
High Normal High 2 NEG

Normal Normal Normal 1 POS

Table: Rough Decision Table representation of the rough set:
Response=Positive

Wojciech Ziarko (UofR) From Deterministic to Probabilistic RS May 14, 2024 8 / 44



Acquisition of Rough Decision Tables

From data, based on analysis and pre-processing of existing data:
data mining, most common

Based on prior human expert knowledge: expert specifies the classes
of rough decision table

Through learning from individual observations using pre-selected
training data: objects, cases, instances

The decision tables acquired from data are likely to be incomplete,
due to the nature of learning from data
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Analysis and Processing of Rough Decision Tables

Analysis of dependencies occurring in the decision table: functional,
partial functional

Reduction - elimination of redundant or unrelated parts of the
decision, such as:

Elimination of redundant columns (attribute reducts)
Elimination of redundant values (value reducts)

Significance analysis of individual attributes

Formation of minimal length, that is, most generalized predictive rules
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Typical Issues with Applications to Real-World Data

Imperfections of practical application data

Presence of measurement noise

Lack of consistency

Extensive boundary regions

Inter-data relationships are often probabilistic in nature, rather than
deterministic

Difficulty in creating any deterministic predictive rules or models from
data
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Variable Precision Approach to Rough Sets

An attempt to create ”softer” rough sets, more applicable to real
world problems and imperfect data

To utilize frequency distribution info in data when creating decision
tables and rules (probabilistic knowledge)

To allow for use of subjective probabilities obtained from human
experts

To enhance the scope of applications of rough set theory fundamental
ideas
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Single Parameter Variable Precision Model of Rough Sets

Misclassification degree of set X with respect to Y :

c(X ,Y ) = 1− card(X ∩ Y )

card(X )
=

card(X ∩ −Y )

card(X )
= P(¬Y |X )

if card(X ) > 0 and c(X ,Y ) = 0 if card(X ) = 0

The partial majority inclusion of the set X within Y :
Y ⊇β X if and only if c(X ,Y ) ≤ β with 0 ≤ β < 0.5

Example:

Let U = {x1, x2, x3, x4, x5, x6, x7, x8}, X = {x1, x2, x3, x4} and
Y = {x1, x2, x3, x8}. Then ¬Y = {x4, x5, x6, x7} giving Y ⊇0.25 X
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Set Approximations

Lower approximation

Rβ(X ) =
⋃
{E ∈ R∗ : c(E ,X ) ≤ β} =

⋃
{E ∈ R∗ : X ⊇β E}

Upper approximation

Rβ(X ) =
⋃
{E ∈ R∗ : c(E ,X ) < 1− β}

Negative region

NEGRβ(X ) =
⋃
{E ∈ R∗ : c(E ,X ) ≥ 1− β}

Boundary region

BNRβ(X ) =
⋃
{E ∈ R∗ : β < c(E ,X ) < 1− β}
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Relationship to Pawlak Rough Sets

R0(X ) = R(X )

R0(X ) = R(X )

BNR0(X ) = BNR(X )

NEGR0(X ) = NEGR(X )
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Variable Precision Rough Sets: Asymetric Bounds

Two parameters used to control approximation regions

Lower and upper limit 0 ≤ l < u ≤ 1

Lower approximation

R l(X ) =
⋃
{E ∈ R∗ : c(E ,X ) ≤ l}

Upper approximation

Ru(X ) =
⋃
{E ∈ R∗ : c(E ,X ) < u}

Negative region

NEGRu(X ) =
⋃
{E ∈ R∗ : c(E ,X ) ≥ u}

Boundary region

BNRl ,u(X ) =
⋃
{E ∈ R∗ : l < c(E ,X ) < u}

When l = 0 and u = 1, the above definitions reduce to the original rough
sets approximation regions (check)
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Example: A Classification Table of Finishing Mill Data

Situation Width Gauge Result
e1 Wide Heavy Good
e2 Wide Heavy Bad
e3 Wide Medium Bad
e4 Wide Medium Good
e5 Wide Thin Bad
e6 Wide Thin Bad
e7 Narrow Heavy Bad
e8 Narrow Heavy Good
e9 Narrow Medium Good
e10 Narrow Medium Good
e11 Narrow Thin Good
e12 Narrow Thin Good
e13 Wide Heavy Good
e14 Wide Heavy Good
e15 Wide Medium Good
e16 Wide Thin Good
e17 Wide Thin Good
e18 Narrow Heavy Good
e19 Narrow Heavy Good
e20 Narrow Medium Bad
e21 Narrow Thin Bad
e22 Narrow Thin Bad

Condition attributes: C={Width, Gauge}
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Approximation Space Based on Width and Gauge

Condition Classes Forming Approximation Space:

(Width := Wide)AND(Gauge := Heavy) with C1 = {1, 2, 13, 14},
Width := Wide)AND(Gauge := Medium) with C2 = {3, 4, 15},
(Width := Wide)AND(Gauge := Thin) with C3 = {5, 6, 16, 17},
(Width := Narrow)AND(Gauge := Heavy) with C4 = {7, 8, 18, 19},
(Width := Narrow)AND(Gauge := Medium) with C5 = {9, 10, 20},
(Width := Narrow)AND(Gauge := Thin) with C6 = {11, 12, 21, 22}.

Decision Classes:

(Result := Good) with
D1 = {1, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}
(Result := Bad) with D2 = {2, 3, 5, 6, 7, 20, 21, 22}.
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Approximations of (Result := Bad)

C (D2) = ∅ then no deterministic decision rule exists for (Result := Bad)

c(C1,D2) = 0.75, c(C2,D2) = 0.67, c(C3,D2) = 0.5
c(C4,D2) = 0.75, c(C5,D2) = 0.67, c(C6,D2) = 0.5

C 0.6(D2) =
⋃
{Ci ∈ C ∗ : c(Ci ,D2) ≤ 0.6} =

⋃
{C3,C6}

The above means that non-deterministic rule exists for (Result := Bad)

BNC0.6,0.7(D2) =
⋃
{Ci ∈ C ∗ : 0.6 < c(Ci ,D2) < 0.7} =

⋃
{C2,C5}

C 0.7(D2) =
⋃
{Ci ∈ C ∗ : c(Ci ,D2) < 0.7} =

⋃
{C2,C3,C5,C6}

NEGC0.7(D2) =
⋃
{Ci ∈ C ∗ : c(Ci ,D2) ≥ 0.7} =

⋃
{C1,C4}
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Probabilistic Rough Sets

Rough set X prior probability , representing the probability of
occurrence of X , in the absence of any other information:

P(X ) =
card(X )

card(U)
(1)

with the assumption 0 < P(X ) < 1

Elementary set E prior probability:

P(E ) =
card(E )

card(U)
(2)

with the assumption 0 < P(E ) < 1

Conditional occurrence probability of the rough set X within
elementary set E :

P(X |E ) =
card(X ∩ E )

card(E )
, (3)

if U if infinite, the set measure theory can be used to substitute for
cardinalities
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Probabilistic Approximation Regions 1

Based on the degree deviation of conditional probabilities from prior
probability rather than presence or absence of a set inclusion

Approximation regions characterize areas with significantly increased,
significantly decreased, or approximately unchanged rough set X
occurrence probability in relation to prior probability

The approximation regions are defined in terms of two precision
control parameters:

The upper limit u and the lower limit l, with the constraint:

0 ≤ l < P(X ) < u ≤ 1 (4)

The upper and lower limit parameters give precise meaning of the
terms significantly decreased, or significantly increased rough set X
occurrence probability
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Probabilistic Approximation Regions 2

Positive region:

POSu(X ) = ∪{E : 0 < P(X ) < u ≤ P(X |E ) ≤ 1}. (5)

Negative region:

NEGl(X ) = ∪{E : 0 ≤ P(X |E ) ≤ l < P(X ) < 1}. (6)

Boundary region

BNDl ,u(X ) = ∪{E : l < P(X |E ) < u}. (7)

When l = 0 and u = 1, the above definitions reduce to the original
rough sets approximation regions
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Probabilistic Rough Sets in the Limit: Bayesian Rough Sets

The lower and upper limit parameters are constrained by

0 ≤ l < P(X ) < u ≤ 1 (8)

When both l and u approach P(X ), l → P(X ) and P(X )← u then:

POSu(X )→ POS∗(X ) = ∪{E : 0 < P(X ) < P(X |E ) ≤ 1} (9)

NEGu(X )→ NEG ∗(X ) = ∪{E : 0 ≤ P(X |E ) < P(X ) < 1} (10)

BNDl ,u(X )→ BND∗(X ) = ∪{E : 0 < P(X |E ) = P(X ) < 1}. (11)

The limit approximation regions are called Absolute Approximation
Regions

They provide the basis of Bayesian Rough Set model
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Probabilistic Approximations: Example

A rough set X is probabilistically defined by specifying definitions of
its approximation regions elementary sets and their probabilistic
relations to the rough set

This can be done in a tabular form by creating a probabilistic decision
table
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Classification Table

Obj HRate BP Temp Treatm Response
e1 High High High 1 Positive
e2 High High High 1 Negative
e3 High High Normal 2 Negative
e4 High Normal High 1 Positive
e5 High Normal High 1 Positive
e6 Normal Normal Normal 3 Positive
e7 Normal Normal Normal 3 Negative
e8 Low High High 1 Negative
e9 Low High High 1 Negative
e10 Low High Normal 2 Positive
e11 Low High Normal 2 Negative
e12 High Normal High 2 Negative
e13 Normal Normal Normal 1 Positive

Table: Classification Table of medical records
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Probabilistic Decision Tables

HRate BP Temp Treatment Region P(Ei ) P(X |Ei )

High High High 1 BND 0.0520 0.78
High High Normal 2 NEG 0.1354 0.02
High Normal High 1 POS 0.1562 0.99

Normal Normal Normal 3 BND 0.1562 0.36
Low High High 1 NEG 0.1406 0.11
Low High Normal 2 BND 0.1093 0.41
High Normal High 2 NEG 0.1562 0.27

Normal Normal Normal 1 POS 0.0941 0.85

Table: Probabilistic decision table with l = 0.3, u = 0.8, P(X ) = 0.4366 of
Response := Positive
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Probabilistic Rules From Decision Tables

The Probabilistic rule rX |Y is an expression: des(Y )→ s(X )

Y is a definable set with a defining description des(Y )

The description des(Y ) is a conjunction of attribute-value pairs

X is a rough set referenced by s(X )

Three kinds of rules:
Positive rule: Y ⊆ POSu(X )
Negative rule: Y ⊆ NEGl(X )
Boundary rule: Y ⊆ BNDl,u(X )

Rules corresponding to elementary sets E are elementary rules

In practice, minimal length rules are of most interest
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Minimal Probabilistic Rules

HRate BP Temp Treatment Region P(Ei ) P(X |Ei )

High High High 1 BND 0.0520 0.78
High High Normal 2 NEG 0.1354 0.02
High Normal High 1 POS 0.1562 0.99

Normal Normal Normal 3 BND 0.1562 0.36
Low High High 1 NEG 0.1406 0.11
Low High Normal 2 BND 0.1093 0.41
High Normal High 2 NEG 0.1562 0.27

Normal Normal Normal 1 POS 0.0941 0.85

Correspond to value reducts of rough set theory

Are maximally general (strong data support)

Example: BP = Normal ∧ Treatment = 1→ PositiveResponse
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Rule Evaluative Parameters

The rule rX |Y certainty parameter defined as the conditional
probability cert(rX |Y ) = P(X |Y )

The rule rX |Y generality (support,strength ) parameter defined as the
probability gen(rX |Y ) = P(Y )

The rule certainty gain parameter gain(rX |Y ) = |P(X |Y )− P(X )|
For all positive rules: u ≤ cert(rX |Y )

For all negative rules: cert(rX |Y ) ≤ l
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Rule Evaluative Measures

The rules and the evaluative measures can be computed from the
probabilistic decision table

Rule certainty:

cert(rX |Y ) =

∑
E⊆Y P(E )P(X |E )∑

E⊆Y P(E )
}

Rule generality:

gen(rX |Y ) =
∑
E⊆Y

P(E )}

Certainty gain:

gain(rX |Y ) =
|
∑

E⊆Y P(E )P(X |E )− P(X )
∑

E⊆Y P(E )|∑
E⊆Y P(E )

}
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Evaluation of Rules: Example

HRate BP Temp Treatment Region P(Ei ) P(X |Ei )

High High High 1 BND 0.0520 0.78
High High Normal 2 NEG 0.1354 0.02
High Normal High 1 POS 0.1562 0.99

Normal Normal Normal 3 BND 0.1562 0.36
Low High High 1 NEG 0.1406 0.11
Low High Normal 2 BND 0.1093 0.41
High Normal High 2 NEG 0.1562 0.27

Normal Normal Normal 1 POS 0.0941 0.85

P(X ) = 0.4366

BP = Normal ∧ Treatment = 1→ PositiveResponse
Generality = 0.2503, Certainty = 0.9374, CertaintyGain = 0.5008
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Evaluation of Decision Tables: Dependency Measures

The focus is on partial functional and probabilistic dependencies

They capture the quality of approximation of the rough set X in
terms of the elementary sets of the approximation space

Parametric partial functional measure, γl ,u(X |C ), is a variable
precision generalization of Pawlak’s partial functional dependency
measure:

γl ,u(X |C ) = P(POSu(X |C ) ∪ NEGl(X |C ))

where C is a set of condition attributes.

It represents the relative degree of accuracy of approximation of a
rough set X

It can be computed directly from probabilistic decision table by:

γl ,u(X |C ) =
∑

E⊆POSu(X |C)∪NEGl (X |C)

P(E )

Wojciech Ziarko (UofR) From Deterministic to Probabilistic RS May 14, 2024 32 / 44



Partial Functional Dependencies in Decision Tables

Parametric partial functional measure, γl ,u(X |C ) becomes partial
functional dependency measure γ(X |C ) when l = 0 and u = 1:

γ(X |C ) = γ0,1(X |C ) =
∑

E⊆POS1(X |C)∪NEG0(X |C)

P(E )

Approximation regions POS,BND and NEG are definable and disjoint

The dependency between condition attributes C and the attribute
Region is functional
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Dependency Monotonicity

Monotonicity is a property of a dependency which ensures that the
dependency will not decrease with the addition of an attribute

It allows for efficient computation (linear in the number of attributes)
of a minimal subset of attributes preserving the dependency, called
attribute reduct

Theorem (Monotonicity of Partial Functional Dependency)

Let B ⊂ C be a subset of condition attributes on U and let ”a” be any
condition attribute. Then the following relation holds:

γ(X |B) ≤ γ(X |B ∪ {a})
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Parametric Probabilistic Dependencies

The probabilistic dependency represents a degree of probabilistic
dependency between classification formed by condition attributes and
the classification {X ,¬X}
The parametric probabilistic dependency, λ− dependency , is a
normalized expected maximum degree of deviation of the probability
of the rough set P(X |E ), or P(¬X |E ), from the prior probability of
the rough set P(X ), or from the prior probability of the rough set
P(¬X ), respectively:

λl ,u(X |C ) =

∑
E⊆POSu(X |C)∪NEGl (X |C)

P(E )|P(X |E )− P(X )|

P(POSu(X |C ))P(¬X ) + P(NEGl(X |C ))P(X )

The higher deviation reflects stronger probabilistic connection
between elementary set E and the rough set X

If all elementary sets E are probabilistically independent from rough
set X , that is, if P(X ∩ E ) = P(X )P(E ), then λl ,u(X |C ) = 0
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Probabilistic Dependencies in Bayesian Model

To evaluate and optimize probabilistic decision tables derived in the
framework of Bayesian Rough Set model, the non-parametric
probabilistic dependency (probabilistic dependency), λ−Dependency ,
can be used:

λ(X |C ) =

∑
E∈U/C

P(E )|P(X |E )− P(X )|

2P(X )(1− P(X ))
(12)

It represents the average degree of probabilistic dependency between
elementary sets corresponding to combinations of attribute values and
rough set X

If all elementary sets E are probabilistically independent from rough
set X , then λ(X |C ) = 0

It can be computed directly from the probabilistic decision table

It is monotonic
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Mnotonicity of Probabilistic Dependency

Theorem (Monotonicity of Probabilistic Dependency)

Let B ⊆ C be a subset of condition attributes on U and let ”a” be any
condition attribute. Then the following relation holds:

λ(X |B) ≤ λ(X |B ∪ {a}) (13)

It allows for efficient procedure for decision table optimization and
analysis of significance of attributes
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Probabilistic Decision Table Reduction 1

Minimal subset of attributes RED ⊆ C preserving γ(Region|C ) = 1 is
called functional reduct:

γ(Region|RED) = 1 (14)

and for any attribute a ∈ RED:

γ(Region|RED − {a}) < 1 (15)

After reduction, some elementary sets may combine requiring
re-computation of P(E ) and P(X |E )
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Probabilistic Decision Table Reduction Example

HRate BP Temp Treatment Region P(Ei ) P(X |Ei )

High High High 1 BND 0.0520 0.78
High High Normal 2 NEG 0.1354 0.02
High Normal High 1 POS 0.1562 0.99

Normal Normal Normal 3 BND 0.1562 0.36
Low High High 1 NEG 0.1406 0.11
Low High Normal 2 BND 0.1093 0.41
High Normal High 2 NEG 0.1562 0.27

Normal Normal Normal 1 POS 0.0941 0.85

The functional reduct is (HRate, BP, Treatments)

The attribute Temp can be eliminated
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Reduced Probabilistic Decision Table Example

HRate BP Treatment Region P(Ei ) P(X |Ei )

High High 1 BND 0.0520 0.78
High High 2 NEG 0.1354 0.02
High Normal 1 POS 0.1562 0.99

Normal Normal 3 BND 0.1562 0.36
Low High 1 NEG 0.1406 0.11
Low High 2 BND 0.1093 0.41
High Normal 2 NEG 0.1562 0.27

Normal Normal 1 POS 0.0941 0.85
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Probabilistic Reduct

Minimal subset of attributes preserving either the non-parametric
γ − dependency or λ− dependency), called reduct, or probabilistic
reduct, respectively, RED):

λ(X |RED) = λ(X |C ) (16)

and for any attribute a ∈ RED:

λ(X |RED − {a}) < λ(X |RED) (17)

Similarly for the partial functional dependencies
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Significance and Core of Attributes

Determining the contribution of individual reduct RED attributes to
the dependency in question via their significance analysis

Can be done by evaluating the relative decrease of dependency due to
removal of an attribute a from the reduct RED:

sigRED(a) =
λ(X |RED)− λ(X |RED − {a})

λ(X |RED)
> 0 (18)

Finding the subset of most essential attributes with respect to the
probabilistic dependency, the ones contained in ALL reducts called
core attributes

Any core attribute {a} satisfies the following inequality:

λ(X |C ) > λ(X |C − {a}). (19)

Similarly for the non-parametric partial functional dependency
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Issues and Directions

The problem of converting precise numeric values into general
qualitative values

Value Range-based discretization is not good - possible formation of
spurious new combinations

Development of methods for avoiding overfitting and for reliable
estimates of probabilities

Reduction of combinatorial complexity: minimizing the number of
attributes and their values

Use of classification hierarchy

Dealing with incomplete observations

Developing applications: finance, medicine, pharmacy, control,
pattern classification
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Thank You!
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