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Historical introduction

J. Medina.
Towards multi-adjoint property-oriented concept lattices.
Lecture Notes in Artificial Intelligence, 6401:159–166, 2010.

I met at RSKT-2010
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Mathematical tools studied by our research group
M·CIS

M·CIS mathematical tools

• Fuzzy sets.

• Fuzzy logic. Fuzzy Logic Programming.

• Fuzzy Formal Concept Analysis.

• Fuzzy Rough Sets.

• Fuzzy Relation Equations.

• Tools for the extraction, manipulation and prediction of
information in databases.

• Linguistic description of data and automatic generation of
natural language.
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Formal concept analysis

• FCA, introduced by Wille in the eighties, arise as a useful tool
for qualitative data analysis, which has become an important
and appealing research topic.

• FCA is a theory of data analysis which identifies conceptual
structures among data sets. It has been applied to linguistic
databases, library and information science, . . .

• Handling uncertainty, imprecise data or incomplete
information has become an important research topic in the
recent years.
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Rough sets
• Originally proposed by Pawlak.
• It was extended by Düntsch and Gediga, and later
complemented by Yao, in order to consider two different sets,
the set of objects and the set of attributes:

• Property-oriented concept lattice
• Object-oriented concept lattice

• Both FCA and RS theory have been related in several papers.
As a consequence, we can apply the results presented in a
formal concept analysis framework to rough set theory.

M. J. Beńıtez, J. Medina, E. Raḿırez, and D. Ślȩzak.
Rough-set-driven approach for attribute reduction in fuzzy
formal concept analysis.
Fuzzy Sets and Systems, 391:117–138, 2020.

Awarded

PP-RAI Contest for the Most Influential Article on Rough Sets
co-authored by Polish Researchers in 2020-2022.



M·CIS Introduction Rough sets Modal-style operators MARE Reducing MARE Conclusions

Rough set theory

Information table/system

(X ,A), where X and A are finite, non-empty sets of objects and
attributes, respectively. Each a in A corresponds to a mapping
ā : X → Va, where Va is the value set of a over X .

Example

Temperature Headache

x1 Hight Yes
x2 Normal Yes
x3 Hight Yes
x4 Normal No
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B-indiscernibility relation

For every subset B of A, the B-indiscernibility relation RB is

RB = {(x , y) ∈ X × X | for all a ∈ B, a(x) = a(y)}

which is an equivalence relation and the equivalence classes are
denoted by [x ]RB

.

Example

RA x1 x2 x3 x4
x1 1 0 1 0
x2 0 1 0 0
x3 1 0 1 0
x4 0 0 0 1
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Rough set: lower and upper approximation

Example

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}
• [x4]A = {x4}

These classes are used to approximate sets.

Lower and upper approximation

Given A ⊆ X , its lower and upper approximation w.r.t. RB are
defined by

RB↓A = {x ∈ X | [x ]RB
⊆ A}

RB↑A = {x ∈ X | [x ]RB
∩ A ̸= ∅}
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Lower and upper approximation: Example

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}, [x4]A = {x4}

RB↓A = {x ∈ X | [x ]RB
⊆ A}

Example

If A1 = {x2, x3}, then

{
RB↓A1 = {x2}
RB↑A1 = {x1, x2, x3}

If A2 = {x1, x3}, then

{
RB↓A1 = {x1, x3}
RB↑A1 = {x1, x3}
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Lower and upper approximation: Example

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}, [x4]A = {x4}

RB↑A = {x ∈ X | [x ]RB
∩ A ̸= ∅}

Example

If A1 = {x2, x3}, then

{
RB↓A1 = {x2}
RB↑A1 = {x1, x2, x3}

If A2 = {x1, x3}, then

{
RB↓A1 = {x1, x3}
RB↑A1 = {x1, x3}



M·CIS Introduction Rough sets Modal-style operators MARE Reducing MARE Conclusions

Lower and upper approximation: Example

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}, [x4]A = {x4}

RB↓A = {x ∈ X | [x ]RB
⊆ A}

Example

If A1 = {x2, x3}, then

{
RB↓A1 = {x2}
RB↑A1 = {x1, x2, x3}

If A2 = {x1, x3}, then

{
RB↓A1 = {x1, x3}
RB↑A1 = {x1, x3}
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Lower and upper approximation: Example

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}, [x4]A = {x4}

RB↑A = {x ∈ X | [x ]RB
∩ A ̸= ∅}

Example

If A1 = {x2, x3}, then

{
RB↓A1 = {x2}
RB↑A1 = {x1, x2, x3}

If A2 = {x1, x3}, then

{
RB↓A1 = {x1, x3}
RB↑A1 = {x1, x3}
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Lower and upper approximation: Properties

Properties

• RB↓A ⊆ A ⊆ RB↑A

• A ⊆ B ⇒
{

R↓A ⊆ R↓B
R↑A ⊆ R↑B

• RB↓(RB↑A) ⊆ RB↑A, RB↓A ⊆ RB↑(RB↓A)
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Property-oriented concept lattices

RA x1 x2 x3 x4

x1 1 0 1 0
x2 0 1 0 0
x3 1 0 1 0
x4 0 0 0 1

• oBjects={x1, x2, x3, x4}
• Attributes= {a1, a2, a3, a4}
• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R x1 x2 x3 x4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={x1, x2, x3, x4}
• Attributes= {a1, a2, a3, a4}
• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R x1 x2 x3 x4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={x1, x2, x3, x4}
• Attributes= {a1, a2, a3, a4}
• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R b1 b2 b3 b4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={b1, b2, b3, b4} = B

• Attributes= {a1, a2, a3, a4} = A

• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R b1 b2 b3 b4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={b1, b2, b3, b4} = B

• Attributes= {a1, a2, a3, a4} = A

• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R b1 b2 b3 b4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={b1, b2, b3, b4} = B

• Attributes= {a1, a2, a3, a4} = A

• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y }
R↑X = {a ∈ A | aR ∩ X ̸= ∅}
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Property-oriented concept lattices

R b1 b2 b3 b4

a1 1 0 1 0
a2 0 1 0 0
a3 1 0 1 0
a4 0 0 0 1

• oBjects={b1, b2, b3, b4} = B

• Attributes= {a1, a2, a3, a4} = A

• Relation R : A× B → {0, 1}

R could not be an equivalence relation. Hence, given b ∈ B, the
meaning of [b]R could be Rb = {a ∈ A | R(a, b) = 1}, and [a]R
may be aR = {b ∈ B | R(a, b) = 1}, for all a ∈ A.

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

R↓Y = {b ∈ B | Rb ⊆ Y } = Y N = Y ↓N

R↑X = {a ∈ A | aR ∩ X ̸= ∅} = Xπ = X ↑π
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Property-oriented concept lattices

FCA: Many-valued context

Temperature Headache

Normal Hight No Yes

x1 0 1 0 1
x2 1 0 0 1
x3 0 1 0 1
x4 1 0 1 0

Given X ⊆ B subset of objects, Y ⊆ A subset of attributes

{b ∈ B | Rb ⊆ Y } = Y N = Y ↓N

{a ∈ A | aR ∩ X ̸= ∅} = X π = X ↑π
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Modal-style operators

Given A, B, and R : A× B → {0, 1}, the mappings π : 2B → 2A,
N : 2B → 2A, defined, for each X ⊆ B, as:

Xπ = {a ∈ A | there is b ∈ X , such that aRb} (1)

XN = {a ∈ A | for all b ∈ B, if aRb, then b ∈ X} (2)

Analogously, we can define the mappings: π : 2A → 2B ,
N : 2A → 2B .

These operators are called possibility and necessity operators,
respectively.

They are composed to form Galois connections and, hence, new
concept lattices: object-oriented concept lattice and
property-oriented concept lattice.
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Attribute classification

J. Medina.
Relating attribute reduction in formal, object-oriented and
property-oriented concept lattices.
Computers & Mathematics with Applications 64:1992–2002,
2012.

Theorem

Let (A,B,R) be a formal context, and B(A,B,Rc), Lo(A,B,R)
and Lp(A,B,R). For each a ∈ A, the following equivalences are
obtained:

1. a ∈ If c iff a ∈ Io iff a ∈ Ip

2. a ∈ Kf c iff a ∈ Ko iff a ∈ Kp

3. a ∈ Cf c iff a ∈ Co iff a ∈ Cp
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Attribute reduction

Theorem

Given a formal context (A,B,R) and D ⊆ A, the following are
equivalents:

• D is an attribute reduct of the formal concept lattice
B(A,B,Rc)

• D is an attribute reduct of the object-oriented concept lattice
Lo(A,B,R)

• D is an attribute reduct of the corresponding
property-oriented concept lattice Lp(A,B,R).
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Fuzzy POCL and OOCL

J. Medina.
Multi-adjoint property-oriented and object-oriented concept
lattices.
Information Sciences, 190:95–106, 2012.

Given a frame (L1, L2,P,&1, . . . ,&l) and context (A,B,R, σ), we

consider ↑π : LB2 → LA1 ,
↓N : LA2 → LB1 :

g↑π(a) = sup{R(a, b)&σ(b) g(b) | b ∈ B}

f ↓
N
(b) = inf{f (a) ↖σ(b) R(a, b) | a ∈ A}

These definitions are generalizations of the classical and fuzzy
possibility and necessity operators by Yao, Düntsch, Gediga,
Georgescu, Popescu, Lai, Dubois, Prade, etc.
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Multi-adjoint property-oriented concept lattice

The pair (↑π , ↓
N
) is an adjunction (isotone Galois connection), that

is ↑π and ↓N are order-preserving; and they satisfy that f ↓
N↑π ⪯1 f ,

for all f ∈ LA1 , and that g ⪯2 g
↑π↓N , for all g ∈ LB2 .

The set of the concepts

MπN = {⟨g , f ⟩ | g ∈ LB2 , f ∈ LA1 and g↑π = f , f ↓
N
= g}

together with the ordering ⪯ defined by
⟨g1, f1⟩ ⪯ ⟨g2, f2⟩ iff g1 ⪯2 g2 (or f1 ⪯1 f2) forms a complete
lattice, (MπN ,⪯), which is called multi-adjoint property-oriented
concept lattice.
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Definition

Given three sets U, V , W , a multi-adjoint frame and a mapping
σ : V → {1, . . . , n} which assigns an adjoint triple to each variable,
a MARE is an expression of the form

R ⊙σ X = T

where R ∈ PU×V , T ∈ LU×W
1 and X ∈ LV×W

2 is unknown.

The operator ⊙σ is a sup-composition operator. It is convenient to
recall that a MARE is equivalent to a set of systems of the form

R(u1, v1)&σ(v1) x1 ∨ · · · ∨ R(u1, vm)&σ(vm) xm = t1
...

...
...

...
R(ur , v1)&σ(v1) x1 ∨ · · · ∨ R(ur , vm)&σ(vm) xm = tr
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Example. Multi-adjoint frame

([0, 1]8,≤,&∗
1,↙1

∗,↖∗
1,&

∗
2,↙2

∗,↖∗
2)

x&∗
1y = ⌈8x2y⌉

8 , for all x , y ∈ [0, 1]8, and its corresponding
residuated implications

z ↙1
∗ y =

1 if y = 0

min

{
⌊8
√

z/y⌋
8 , 1

}
otherwise

z ↖∗
1 x =

{
1 if x = 0

min
{

⌊8z/x2⌋
8 , 1

}
otherwise

x&∗
2y = ⌈8xy2⌉

8 , for all x , y ∈ [0, 1]8, and its corresponding
residuated implications.
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Example. Particular FRE

Consider U = {u1, u2, u3, u4, u5}, V = {v1, v2, v3, v4, v5},
W = {w} and the FRE with sup-&σ-composition

R ⊙σ X = T (3)

where σ : V → {1, 2} assigns v1, v2, v4 to the first adjoint triple
and v3, v5 to the second one,

R =


0.75 0.5 0 0.5 0.5

0.5 0.25 0.25 0.75 1

0.75 0.5 0.125 0 0.375

0.75 0.5 0 0.5 0.5

0.75 0.5 0.125 0 0.5

 , T =


0.25

0.5

0

0.25

0


and X ∈ [0, 1]V×W

8 is unknown.
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Concept lattice associated with a MARE

The study of MARE will be based on the fact that every MARE
can be assigned to a context.

Context associated with a MARE

The context associated with the MARE R ⊙σ X = T is the
multi-adjoint context (U,V ,R, σ).

Every multi-adjoint context determines a property-oriented concept
lattice, by means of the mappings (↑π ,↓

N
), which define an isotone

Galois connection.

MπN(U,V ,R) =
{
(g , f ) ∈ LV2 × LU1 | g = f ↓

N
, f = g↑π

}
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Solvability and maximum solution of a MARE

J. C. D́ıaz-Moreno and J. Medina.
Multi-adjoint relation equations: Definition, properties and
solutions using concept lattices.
Information Sciences, 253:100–109, 2013.

Theorem 1 [Solvability and maximum solution of a MARE]

Let R ⊙σ X = T be a FRE and (MπN ,⪯πN) the concept lattice
associated with it. Then, R ⊙σ X = T is solvable if and only if
Tw ∈ I(MπN) for all w ∈ W . In that case, X ∈ LV×W

2 defined as

X (v ,w) = T ↓N
w (v) is the maximum solution of the equation.

Several approximation methods will be obtained from this result,
using the associated concept lattice.
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Example. Particular FRE

Consider U = {u1, u2, u3, u4, u5}, V = {v1, v2, v3, v4, v5},
W = {w} and the FRE with sup-&σ-composition

R ⊙σ X = T (4)

where σ : V → {1, 2} assigns v1, v2, v4 to the first adjoint triple
and v3, v5 to the second one,

R =


0.75 0.5 0 0.5 0.5

0.5 0.25 0.25 0.75 1

0.75 0.5 0.125 0 0.375

0.75 0.5 0 0.5 0.5

0.75 0.5 0.125 0 0.5

 , T =


0.25

0.5

0

0.25

0


and X ∈ [0, 1]V×W

8 is unknown.
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Example. Checking solvability

We will check whether FRE (4) is solvable by the characterization
theorem based on its associated context (U,V ,R, σ).

Specifically, we will see if T = T ↓N↑π , since W is a singleton, that
is, T only has one column. Indeed, making the corresponding
computations, the following chain of equalities holds

T ↓N↑π =


0
0
0

0.875
0


↑π

=


0.25
0.5
0

0.25
0

 = T
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Novel advances

Attribute reduction theory

D. Lobo, V. López-Marchante, and J. Medina.
Reducing fuzzy relation equations via concept lattices.
Fuzzy Sets and Systems, 463:108465, 2023.
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Reducing MARE

Reducing MARE is a process in which redundant information is
removed from its coefficient matrix.

Definition [Reduced MARE]

Let Y ⊆ U and consider the fuzzy relations RY = R|Y×V ,
TY = T|Y×W . The equation RY ⊙σ X = TY is called Y -reduced
equation of the MARE R ⊙σ X = T .

Reducing a MARE in a consistent set preserves its solution set.

Theorem 2 [Reduction theorem]

Let R ⊙σ X = T be a solvable MARE and Y a consistent set of it
associated context (U,V ,R, σ). The Y -reduced equation of
R ⊙σ X = T is solvable. Moreover, they have the same solution
set.
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Example. Multi-adjoint frame

([0, 1]8,≤,&∗
1,↙1

∗,↖∗
1,&

∗
2,↙2

∗,↖∗
2)

x&∗
1y = ⌈8x2y⌉

8 , for all x , y ∈ [0, 1]8, and its corresponding
residuated implications

z ↙1
∗ y =

1 if y = 0

min

{
⌊8
√

z/y⌋
8 , 1

}
otherwise

z ↖∗
1 x =

{
1 if x = 0

min
{

⌊8z/x2⌋
8 , 1

}
otherwise

x&∗
2y = ⌈8xy2⌉

8 , for all x , y ∈ [0, 1]8, and its corresponding
residuated implications.
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Example. Particular FRE

Consider U = {u1, u2, u3, u4, u5}, V = {v1, v2, v3, v4, v5},
W = {w} and the FRE with sup-&σ-composition

R ⊙σ X = T (5)

where σ : V → {1, 2} assigns v1, v2, v4 to the first adjoint triple
and v3, v5 to the second one,

R =


0.75 0.5 0 0.5 0.5

0.5 0.25 0.25 0.75 1

0.75 0.5 0.125 0 0.375

0.75 0.5 0 0.5 0.5

0.75 0.5 0.125 0 0.5

 , T =


0.25

0.5

0

0.25

0


and X ∈ [0, 1]V×W

8 is unknown.
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Reducts

The context (U,V ,R, σ) admits two possible reducts:
Y1 = {u1, u2, u3} and Y2 = {u2, u3, u4}. Hence, we may consider
two different ways of reducing FRE (4) preserving its solution set.
According to the reduct Y1 = {u1, u2, u3}, it is sufficient preserving
the three first equations of FRE (4), whilst the last two equations
can be removed.

RY1 ⊙σ X = TY1 (6)

which corresponds to the system:

0.75&1 x1 ∨ 0.5&1 x2 ∨ 0&2 x3 ∨ 0.5&1 x4 ∨ 0.5&2 x5 = 0.25

0.5&1 x1 ∨ 0.25&1 x2 ∨ 0.25&2 x3 ∨ 0.75&1 x4 ∨ 1&2 x5 = 0.5

0.75&1 x1 ∨ 0.5&1 x2 ∨ 0.125&2 x3 ∨ 0&1 x4 ∨ 0.375&2 x5 = 0
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Set of solutions of the reduced FRE

J. C. D́ıaz-Moreno and J. Medina.
Using concept lattice theory to obtain the set of solutions of
multi-adjoint relation equations.
Information Sciences, 266(0):218–225, 2014.

Considering the context (Y1,V ,RY1 , σ|Y1×V ) we calculate the
concept whose intent is

TY1 =

 0.25
0.5
0


obtaining (0, 0, 0, 0.875, 0).
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The whole set of solutions

The solution set of FRE (5) is given by(
(0, 0, 0, 0.875, 0)

] ∖ (
(0, 0, 0, 0.625, 0)

]
i.e.

{
X ∈ [0, 1]V8 | X ≤ (0, 0, 0, 0.875, 0),X ̸≤ (0, 0, 0, 0.625, 0)

}
.

Consequently, we conclude that there are two solutions of the
FRE (5), which implies solutions of FRE (4).

X1 =


0
0
0

0.875
0

 X2 =


0
0
0

0.75
0
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Approximating unsolvable FRE
A difficulty that often arises when working with FRE is their lack
of solutions, i.e., their unsolvability.

Conservative and optimistic approximations using an
associated concept lattice to each FRE

M. E. Cornejo, J. C. D́ıaz-Moreno, and J. Medina.
Multi-adjoint relation equations: A decision support system for
fuzzy logic.
International Journal of Intelligent Systems, 32:778–800, 2017.

Approximation methods that achieve solvability by
eliminating redundant information.

D. Lobo, V. López-Marchante, and J. Medina.
Reducing fuzzy relation equations via concept lattices.
Fuzzy Sets and Systems, 463:108465, 2023.
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Conclusions and future work

• POCL/OOCL are generalization of RST with the philosophy
of FCA.

• We have characterized the solvability of FRE with the
POCL/OOCL concepts.

• Multi-adjoint relation equations are the most flexible relation
equation that can be solved, at the moment.

• We have presented several mechanisms in order to compute
approximate solutions for unsolvable multi-adjoint relation
equations.

• As a future work, we will continue exploiting the relationship
among FCA and FRE.

• We will apply the obtained results to real-life problems.
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