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Introduction and Motivation

Classical Rough Sets consider only lower and upper
approximations, however the concept of an approximation is not
restricted only to lower and upper approximations.

Consider the well known linear least squares approximation of
points in the two dimensional plane (credited to C. F. Gauss,
1795). Here we know or assume that the points should be on a
straight line and we are trying to find the line that fits the data
best.

However, this is not the case of an upper, or lower approximation
in the sense of Rough Sets.

The cases like the linear least squares approximation assume
that there is a well defined concept of similarity (or distance) and
some techniques for finding maximal similarity (minimal distance)
between entities and their approximations.
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In 2013 and 2016 the concept of optimal approximation has
been added to standard Rough sets and discussed in some
detail.

In 2017 the concept of optimal approximation was extended to
the Rough sets defined by coverings.
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Optimal Approximation - Intuition

Optimal Approx = Lower Approx ∪ some elements from
(Upper Approx − Lower Approx)

The problem is ‘which ones?’
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The word ‘optimal’ suggests some numerical calculations and
comparisons.

We need some proper definition of similarity measure (or index)
for sets, including some axioms.

Any formal definition of similarity must involve the concept of
measure, either abstract or specific.

To tackle the problem that different similarity indexes may
produce identical results we introduced the concept of consistent
similarities.

In some contexts, similarity can be seen as an inverse of
distance.
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Measure

‘ Measure’ is a abstract generalization of such concepts as
cardinality, length, area, volume, etc.

Let U be a set, called universe, and let R be the set of real
numbers.
A function µ : 2U → R is a finite measure over 2U if it satisfies:

1 for all X ⊆ U, 0 ≤ µ(X)< ∞,
2 µ( /0) = 0,
3 if Xi ⊆ U for i = 1, . . . ,∞ and Xi ∩Xj = /0 if i ̸= j , then

µ(
∞⋃

i=1

Xi) =
∞

∑
i=1

µ(Xi).

A measure µ is null set free if µ(X) = 0 ⇐⇒ X = /0.

One of the most popular measures for finite sets is cardinality, i.e.
µ(X) = |X |.
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Distance

Let X be a set, and let R be the set of real numbers.
A function dist : X → R is a distance if and only if

1 dist(A,B)≥ 0,
2 dist(A,B) = 0 ⇐⇒ A = B,
3 dist(A,B) = dist(B,A),
4 dist(A,C)≤ dist(A,B)+dist(B,C), i.e triangle inequality.

for all A,B,C ∈ X .
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Similarity Axioms
As opposed to the orthogonal concept of a distance, the concept
of similarity does not have standard indisputable axiomatization.
Depending on the area of application, some desirable properties
may vary, sometimes substantially.
In our approach we assume that the similarity is any (total)
function sim : 2U ×2U → [0,1] satisfying the following five
axioms:

S1 (Maximum) : sim(A,B) = 1 ⇐⇒ A = B,
S2 (Symmetry) : sim(A,B) = sim(B,A),
S3 (Minimum) : sim(A,B) = 0 ⇐⇒ A∩B = /0,
S4 (Inclusion) : if a ∈ B \A then sim(A,B)< sim(A∪{a},B),
S5 (Exclusion) : if a /∈ A∪B and A∩B ̸= /0 then

sim(A,B)> sim(A∪{a},B)
S5′ (Weak Exclusion) : if a /∈ A∪B then sim(A,B)≥ sim(A∪{a},B)

A similarity sim is metrical if the function
dist(A,B) = 1− sim(A,B) is a proper distance.
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Classical Rough Sets

U is a finite and non-empty universe of elements, E ⊆ U ×U be
an equivalence relation.
The pair AS = (U,E) is called (Pawlak) approximation space.
Let U/E denote the set of all equivalence classes of E .
Note that U/E is also a partition of U.
The elements of ESets = U/E are called elementary sets.
A set A ⊆ U is definable if it is a union of some equivalence
classes of the equivalence relation E . Let DSets denote the
family of all definable sets.
Lower Approximation: A(X) =

⋃
{A | A ∈ Esets∧A⊆ X}.

Upper Approximation: A(X) =
⋃
{A | A ∈ Esets∧A∩X ̸= /0}.

For every A ∈ DSets, the set esets(A) = {B | B⊆ A∧B ∈ ESets},
is its collection of elementary sets.
Border: B(X) = {B | B ∈ esets(A(X))\ esets(A(X))} ⊆ ESets.
Border Sets:
B(X) = {A | A ⊆ A(X)\A(X)∧A ∈ DSets} ⊆ DSets.
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Boarder: All blue rectangles.

Boarder Sets: Unions of blue rectangles.

Optimal Approx = Lower Approx ∪ some Boarder Set
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Optimal Approximation

Definition

For every set X ⊆ U, a definable set O ∈ DSets is an optimal
approximation of X (w.r.t. a given similarity measure sim) if and only if:

sim(X ,O) = max
A∈DSets

(sim(X ,A))

The set of all optimal approximations of X is denoted by Optsim(X). □

Proposition

For every set X ⊆ U, and every O ∈ Optsim(X):
A(X)⊆ O ⊆ A(X) □
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Popular (Symmetric) Similarity Measures

Marczewski-Steinhaus index (1958): simMS(X ,Y ) =
µ(X ∩Y )

µ(X ∪Y )
.

First proposed by Jaccard in 1901 with µ(X) = |X |.

Dice-Sørensen index (1945, 1957): simDS(X ,Y ) =
2µ(X ∩Y )

µ(X)+µ(Y )
.

Initially proposed with µ(X) = |X |.

Braun-Blanquet index (1928) : simBB(X ,Y ) =
µ(X ∩Y )

max(µ(X),µ(Y ))
.

Initially proposed with µ(X) = |X |.
Symmetric Tversky index (1977), it has a parameter α:

simα
T (X ,Y ) =

µ(X ∩Y )

µ(X ∩Y )+αµ(X \Y )+αµ(Y \X)
.

Initially proposed with µ(X) = |X |.
Note that for α = 1, simα

T (X ,Y ) = simMS(X ,Y )
while for α = 0.5, simα

T (X ,Y ) = simDS(X ,Y ).

Only Marczewski-Steinhaus index is metrical!
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Asymmetric Similarity Measures

Tversky index (1977), it has a parameters α,β:

simα,β
T (X ,Y ) =

µ(X ∩Y )

µ(X ∩Y )+αµ(X \Y )+βµ(Y \X)
.

Tversky index is an asymmetric by design similarity index on sets
that compares a variant to a prototype.

If we consider X to be the prototype and Y to be the variant, then
α corresponds to the weight of the prototype and β corresponds
to the weight of the variant. For the interpretation of X and Y as
prototype and variant, α usually differs from β.

However for the interpretations used in our approach, the case
α ̸= β is debatable, however it might be worth some
consideration.
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Consistent Similarity Measures

Definition
We say that two similarity indexes sim1 and sim2 satisfying axioms
S1–S5 are consistent if for all sets A,B,C ⊆ U,

sim1(A,B)< sim1(A,C) ⇐⇒ sim2(A,B)< sim2(A,C). □

Theorem
If sim1 and sim2 are consistent then for each X ⊆ U,

Optsim1
(X) = Optsim2

(X). □

Theorem
1 The following three similarity indexes are consistent:

Marczewski-Steinhaus, Symmetric Tversky, and Dice-Sørensen.
2 The Marczewski-Steinhaus index and Braun-Blanquet index are

not consistent. □
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Finding Optimal Approximations

Let sim be a given similarity measure.

We know that some optimal approximation O does exist, and that
A(X)⊆ O ⊆ A(X).

We also know that any optimal approximation of X , is the union of
the lower approximation of X and some element A ∈ B(X)∪{ /0}.

Definition

Let X ⊆ U, and O ∈ DSets. We say that O is an intermediate
approximation of X , if

A(X)⊆ O ⊆ A(X)

The set of all intermediate approximations of X will be denoted by
IA(X). □
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An intermediate approximation is all ‘pink rectangles’ ∪ any
collection of ‘blue rectangles’.

Ryszard Janicki On Optimal Approximations for Rough Sets 16/32



Ratio Common/Distinct

Definition (Ratio common/distinct)

For every X ,Y ⊆ U, such that X \Y ̸= /0, we define the index ρ(X ,Y ),
called the ratio of common to distinct elements, as follows

ρ(X ,Y ) =
µ(X ∩Y )

µ(X \Y )
.

Note that ρ(X ,Y ) is sound only if µ is finite and null-free. □
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Assume µ(X) = area of X .
Y = The Rough Set
X = Blue rectangle pointed by green arrow: ρ(X ,Y )> 1.
X = Blue rectangle pointed by black arrow: ρ(X ,Y )> 1.
X = Blue rectangle pointed by blue arrow: ρ(X ,Y )< 1.
X = Blue rectangle pointed by red arrow: ρ(X ,Y )< 1.
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Theoretical Foundations

Now, we assume that our similarity measure is
Marczewski-Steinhaus index simMS(X ,Y ) = µ(X∩O)

µ(X∪O) .

It is fairly general, often used, has convincing intuition, and it is
consistent with two other popular indexes.

Lemma

Let X ⊆ U, O ∈ IA(X), A,B ∈ B(X), A∩O = /0, and B ⊆ O. Then
1 simMS(X ,O∪A)≥ simMS(X ,O) ⇐⇒ ρ(A,X)≥ simMS(X ,O)

2 simMS(X ,O\B)≤ simMS(X ,O) ⇐⇒ ρ(B,X)≤ simMS(X ,O) □

if O ∈ Opt(X), then O = A(X)∪B1 ∪ . . .∪Bk , for some k , where
each Bi ∈B(X), i = 1, . . . ,k . The above lemma allows us to
explicitly define these Bi ∈B(X) components.
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Lemma

Let X ⊆ U, O ∈ IA(X), A,B ∈ B(X), A∩O = /0, and B ⊆ O. Then
1 simMS(X ,O∪A)≥ simMS(X ,O) ⇐⇒ ρ(A,X)≥ simMS(X ,O)

2 simMS(X ,O\B)≤ simMS(X ,O) ⇐⇒ ρ(B,X)≤ simMS(X ,O) □

We know from if O ∈ Opt(X), then O = A(X)∪B1 ∪ . . .∪Bk , for
some k , where each Bi ∈B(X), i = 1, . . . ,k .

The above lemma allows us to explicitly define these Bi ∈B(X)
components.

Theorem
For every X ⊆ U, the following two statements are equivalent:

1 O ∈ Opt(X)

2 O ∈ IA(X)∧(
∀B ∈B(X). B⊆ O ⇐⇒ ρ(B,X) = µ(B∩X)

µ(B\X) ≥ simMS(X ,O)
)

. □
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Towards a Greedy Algorithm

Assume that r = |B(X)|, B(X) = {B1, . . . ,Br} and also
i ≤ j ⇐⇒ ρ(Bi ,X)≥ ρ(Bj ,X).

Definition

Let O0,O1, . . . ,Or ∈ IA(X) be the sequence of intermediate
approximations of X defined for i = 0, . . . , r −1 as follows: O0 = A(X)
and

Oi+1 =

{
Oi ∪Bi+1 if simMS(X ,Oi ∪Bi+1)≥ simMS(X ,Oi)
Oi otherwise.

Clearly A(X) = O0 ⊆ O1 ⊆ . . .⊆ Or ⊆ A(X). □

We claim that at least one of these Oi ’s is an optimal
approximation.
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Let X be our green rough set,

O8 = A(X)∪B1 ∪ . . .∪B8 is an optimal approximation, the only
one in this case.
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Main Theorem

Theorem

For every X ⊆ U, we set r = |B(X)|, and we have
1 simMS(X ,Oi+1)≥ simMS(X ,Oi), for i = 0, . . . , r −1.
2 If ρ(B1,X)≤ simMS(X ,A(X)) then A(X) ∈ Opt(X).
3 If ρ(Br ,X)≥ simMS(X ,A(X)) then A(X) ∈ Opt(X).
4 If simMS(X ,Op)≤ ρ(Bp,X) and simMS(X ,Op+1)> ρ(Bp+1,X),

then Op ∈ Opt(X), for p = 1, . . . , r −1.
5 If Op ∈ Opt(X), then Oi = Op for all i = p+1, . . . , r . In particular

Or ∈ Opt(X).
6 O ∈ Opt(X) =⇒ O ⊆ Op, where p is the smallest one from (5).
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Greedy Algorithm

Algorithm (Finding the Greatest Optimal Approximation)

Let X ⊆ U.
1 Construct A(X), A(X), and B(X). Assume r = |B(X)|.
2 For each B ∈B(X), calculate ρ(B,X) = µ(B∩X)

µ(B\X) .

3 Order ρ(B,X) in decreasing order and number the elements of
B(X) by this order, so B(X) = {B1, . . . ,Br} and
i ≤ j ⇐⇒ ρ(Bi ,X)≥ ρ(Bj ,X).

4 If ρ(B1,X)≤ simMS(X ,A(X)) then O = A(X).
5 If ρ(Br ,X)≥ simMS(X ,A(X)) then O = A(X).
6 Calculate Oi from i = 0 until simMS(X ,Op+1)> ρ(Bp+1,X), for

p = 0, . . . , r −1, and set O = Op.

From the main theorem we have that O is the greatest optimal
approximation, i.e. O ∈ Opt(X), and for all O′ ∈ Opt(X), O′ ⊆ O.
We also know that simMS(X ,O′) = simMS(X ,O). □
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Complexity

This greedy algorithm has a complexity of C1 +C2 +O(r logr),
where C1 is the complexity of constructing A(X), A(X), and
B(X); while C2 is the complexity to assign µ(x) for each x ∈ U.

We know that C1 = O(|U|2), and clearly C2 = O(|U|).
The most crucial line of the algorithm, line (6), runs in O(r), but
line (3) involves sorting which has complexity O(rlogr). Since
r < |U|, the total complexity is O(|U|2).
The algorithm gives us the greatest optimal approximation O,
however the whole set Opt(X) can easily be derived from O just
by subtracting appropriate elements of B(X).
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Applications

The algorithm can also be used for any similarity measure sim
that is consistent with the Marczewski-Steinhaus index simMS .

The algorithm is based on the two fundamental assumptions: the
set ESets is a partition, and the similarity measure is simMS , so
the ration ρ can be used to pick appropriate elements from the
border B.

If any of the is not satisfied, the algorithm cannot be used.

So, what about Rough Sets induced by Coverings?

It turns out our approach can also be applied to some Rough
Sets induced by Coverings.

The idea is to replace coverings by appropriate equivalent
partitions.
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All eight components for a given set U and subsets C= {C1,C2,C3}.

In general: C= {Ci | i = 1 . . .n} and C(i1,...,in) = C i1
1 ∩ . . .∩C in

n ,
where ik = 0,1, and C0

i = Ci , C1
i = U \Ci for k = 1,2, . . . ,n.

Let: comp(C) = {C(i1,...,in) | ik = 1,2, k = 1,2, . . . ,n, C(i1,...,in) ̸= /0}.
cov(C) = C∪{U \

⋃n
i=1 Ci} is a covering of U.

We might assume U =
⋃n

i=1 Ci , if convenient.

comp(C) is partition.

We can derive comp(C) from cov(C) and vice versa, so we may
consider them as equivalent.
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Let U be a set and let C be a nonempty family of nonempty
subsets of U.

A non-empty set X ⊆ U is definable by C if it can be constructed
from the elements of C by means of set operations ∪, ∩ and \.

The family of all sets definable by C will be denoted by
definable(C).
C does not have to be a covering.

Theorem

Let U be a set and C a family of nonempty subsets of U.
1 U =

⋃
C(α)∈comp(C)

C(α).

2 For all C(α),C(β) ∈ comp(C), we have
C(α)∩C(β) = /0 ⇐⇒ α ̸= β.

3 Every set X ∈ definable(C) is a union of some components of C, i.e.
X ∈ definable(C) ⇐⇒ ∃C(α1), . . . ,C(αk ) ∈ comp(C).

X = C(α1)∪ . . .∪C(αk ). □
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Rough Sets Defined By Coverings
There are several, similar but not identical models.
U is a finite and non-empty universe of elements, and C is its
covering.
The pair AS = (U,C) is an covering approximation space.
For every x ∈ U, the set N(x) =

⋂
{C ∈ C | x ∈ C} is called the

neighborhood of an element x ∈ U.
Elementary sets: ESets = {N(x) | x ∈ U}.
Definable sets: DSets, are set unions of elementary sets.
Lower approximations are defined differently, for example:

(a) Aa(X) =
⋃
{C ∈ C | C ⊆ X}.

(b) Ab(X) = {x | N(x)⊆ X}.
Upper approximation are defined differently, for example:

(a) A+(X)Aa(X) = Aa(X)∪
⋃
{N(x) | x ∈ X \Aa(X)}.

(b) Ab(X) = {x | N(x)∩X ̸= /0}.
Optimal approximation of X , w.r.t similarity measure:

sim(X ,O) = max
A∈DSets

(sim(X ,A)).

An efficient algorithm from classical rough sets does not work.
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When Partitions Are Derived From Coverings

U is a finite and non-empty universe of elements, and C is its
covering.
The pair AS = (U,C) is an covering approximation space.
comp(C) is the set of all components of C.
Elementary sets: ESets = C.
Definable sets: DSets = definable(C), i.e. all sets that can be
derived from C by applying operations ∪, ∩ and \.
Lower approximation of X :

Ac(X) =
⋃
{C(α) | C(α) ∈ comp(C) ∧ C(α) ⊆ X}.

Upper approximation of X :
Ac

(X) =
⋃

{C(α) | C(α) ∈ comp(C) ∧ C(α)∩X ̸= /0}.
Optimal approximation of X , w.r.t similarity measure:

sim(X ,O) = max
A∈DSets

(sim(X ,A)).

An efficient algorithm from classical rough sets DOES work.
Ac(X),Ac

(X) are never less tight than appropriate
approximations derived directly from coverings.
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Final Comment

One intriguing problem, still open, is the relationship between the
measure µ and the equivalence relation E .

The relation E represents the knowledge of an approximation
space (U,E) and defines the set DSets.

Our definition of optimal approximation indicates that an optimal
approximation is a function of both the measure µ and the
equivalence relation E , but how µ and E relate is an open
problem.
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THANK YOU

QUESTIONS?
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