On Optimal Approximations for Rough Sets

Ryszard Janicki

Department of Computing and Software, McMaster University, Hamilton, Ontario, Canada

IJCRS'2024 Halifax, Nova Scotia, Canada May 17-20, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction and Motivation

- Classical Rough Sets consider only lower and upper approximations, however the concept of an approximation is not restricted only to lower and upper approximations.
- Consider the well known *linear least squares approximation* of points in the two dimensional plane (credited to C. F. Gauss, 1795). Here we know or assume that the points should be on a straight line and we are trying to find the line that fits the data best.
- However, this is not the case of an upper, or lower approximation in the sense of Rough Sets.
- The cases like the linear least squares approximation assume that there is a well defined concept of *similarity* (or *distance*) and some techniques for finding *maximal similarity* (*minimal distance*) between entities and their approximations.

< ロ > < 同 > < 回 > < 回 > .

- In 2013 and 2016 the concept of optimal approximation has been added to standard Rough sets and discussed in some detail.
- In 2017 the concept of optimal approximation was extended to the Rough sets defined by coverings.

A (1) > (1) > (1)

Optimal Approximation - Intuition

- Optimal Approx = Lower Approx ∪ some elements from (Upper Approx − Lower Approx)
- The problem is 'which ones?'

イロト イポト イヨト イヨト

- The word 'optimal' suggests some numerical calculations and comparisons.
- We need some proper definition of *similarity measure* (or index) for sets, including some axioms.
- Any formal definition of similarity must involve the concept of *measure*, either abstract or specific.
- To tackle the problem that different similarity indexes may produce identical results we introduced the concept of *consistent similarities*.
- In some contexts, similarity can be seen as an inverse of distance.

4 A N 4 B N 4 B N

Measure

- 'Measure' is a abstract generalization of such concepts as cardinality, length, area, volume, etc.
- Let U be a set, called *universe*, and let \mathbb{R} be the set of real numbers.
- A function $\mu: 2^U \to \mathbb{R}$ is a *finite measure* over 2^U if it satisfies:

• for all
$$X \subseteq U$$
, $0 \le \mu(X) < \infty$,
• $\mu(\emptyset) = 0$,
• if $X_i \subseteq U$ for $i = 1, \dots, \infty$ and $X_i \cap X_j = \emptyset$ if $i \ne j$, then

$$\mu(\bigcup_{i=1}^{\infty} X_i) = \sum_{i=1}^{\infty} \mu(X_i).$$

- A measure μ is *null set free* if $\mu(X) = 0 \iff X = \emptyset$.
- One of the most popular measures for finite sets is *cardinality*, i.e. $\mu(X) = |X|$.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Let *X* be a set, and let \mathbb{R} be the set of real numbers.
- A function $dist: X \to \mathbb{R}$ is a *distance* if and only if

イロト イポト イヨト イヨト

Similarity Axioms

- As opposed to the orthogonal concept of a *distance*, the concept of *similarity* does not have standard indisputable axiomatization.
- Depending on the area of application, some desirable properties may vary, sometimes substantially.
- In our approach we assume that the *similarity* is any (total) function $sim : 2^U \times 2^U \rightarrow [0, 1]$ satisfying the following five axioms:
- S1 (Maximum):
- S2 (Symmetry) :
- S3 (Minimum):
- S4 (Inclusion) :
- S5 (Exclusion) :

 $sim(A,B) = 1 \iff A = B,$ sim(A,B) = sim(B,A), $sim(A,B) = 0 \iff A \cap B = \emptyset,$ if $a \in B \setminus A$ then $sim(A,B) < sim(A \cup \{a\},B),$ if $a \notin A \cup B$ and $A \cap B \neq \emptyset$ then $sim(A,B) > sim(A \cup \{a\},B)$

S5' (Weak Exclusion): if $a \notin A \cup B$ then $sim(A, B) \ge sim(A \cup \{a\}, B)$

 A similarity sim is metrical if the function dist(A, B) = 1 − sim(A, B) is a proper distance.

Classical Rough Sets

- *U* is a finite and non-empty *universe* of elements, *E* ⊆ *U* × *U* be an *equivalence relation*.
- The pair AS = (U, E) is called (Pawlak) approximation space.
- Let U/E denote the set of all equivalence classes of E.
 Note that U/E is also a partition of U.
- The elements of ESets = U/E are called *elementary sets*.
- A set A ⊆ U is *definable* if it is a union of some equivalence classes of the equivalence relation E. Let DSets denote the family of all definable sets.
- Lower Approximation: $\underline{\mathbf{A}}(X) = \bigcup \{ \mathbb{A} \mid \mathbb{A} \in \mathsf{Esets} \land \mathbb{A} \subseteq X \}.$
- Upper Approximation: $\overline{\mathbf{A}}(X) = \bigcup \{ \mathbb{A} \mid \mathbb{A} \in \text{Esets} \land \mathbb{A} \cap X \neq \emptyset \}.$
- For every A ∈ DSets, the set esets(A) = {B | B ⊆ A ∧ B ∈ ESets}, is its collection of elementary sets.
- Border: $\mathfrak{B}(X) = \{ B \mid B \in \text{esets}(\overline{\mathbf{A}}(X)) \setminus \text{esets}(\underline{\mathbf{A}}(X)) \} \subseteq \mathsf{ESets}.$
- Border Sets:

$$\mathbb{B}(X) = \{ \mathsf{A} \mid \mathsf{A} \subseteq \overline{\mathbf{A}}(X) \setminus \underline{\mathbf{A}}(X) \land \mathsf{A} \in \mathsf{DSets} \} \subseteq \underbrace{\mathsf{DSets}}_{=} \underbrace{\mathsf{$$

- Boarder: All blue rectangles.
- Boarder Sets: Unions of blue rectangles.
- Optimal Approx = Lower Approx ∪ some Boarder Set

イロト (語) (語) (語)

Definition

For every set $X \subseteq U$, a definable set $O \in D$ Sets is an optimal approximation of X (w.r.t. a given similarity measure sim) if and only if:

$$sim(X, O) = \max_{A \in DSets} (sim(X, A))$$

The set of all optimal approximations of X is denoted by $Opt_{sim}(X)$. \Box

Proposition

For every set $X \subseteq U$, and every $O \in Opt_{sim}(X)$: $\underline{A}(X) \subseteq O \subseteq \overline{A}(X)$

Popular (Symmetric) Similarity Measures

- *Marczewski-Steinhaus index* (1958): $sim_{MS}(X, Y) = \frac{\mu(X \cap Y)}{\mu(X \cup Y)}$. First proposed by Jaccard in 1901 with $\mu(X) = |X|$.
- Dice-Sørensen index (1945, 1957): $sim_{DS}(X, Y) = \frac{2\mu(X \cap Y)}{\mu(X) + \mu(Y)}$. Initially proposed with $\mu(X) = |X|$.
- Braun-Blanquet index (1928) : $sim_{BB}(X, Y) = \frac{\mu(X \cap Y)}{\max(\mu(X), \mu(Y))}$. Initially proposed with $\mu(X) = |X|$.
- Symmetric Tversky index (1977), it has a parameter α : $sim_T^{\alpha}(X, Y) = \frac{\mu(X \cap Y)}{\mu(X \cap Y) + \alpha\mu(X \setminus Y) + \alpha\mu(Y \setminus X)}$. Initially proposed with $\mu(X) = |X|$. Note that for $\alpha = 1$, $sim_T^{\alpha}(X, Y) = sim_{MS}(X, Y)$ while for $\alpha = 0.5$, $sim_T^{\alpha}(X, Y) = sim_{DS}(X, Y)$.
- Only Marczewski-Steinhaus index is metrical!

Asymmetric Similarity Measures

- Tversky index (1977), it has a parameters α, β : $sim_T^{\alpha,\beta}(X,Y) = \frac{\mu(X \cap Y)}{\mu(X \cap Y) + \alpha\mu(X \setminus Y) + \beta\mu(Y \setminus X)}.$
- Tversky index is an asymmetric by design similarity index on sets that compares a variant to a prototype.
- If we consider X to be the prototype and Y to be the variant, then α corresponds to the weight of the prototype and β corresponds to the weight of the variant. For the interpretation of X and Y as prototype and variant, α usually differs from β.
- However for the interpretations used in our approach, the case $\alpha \neq \beta$ is debatable, however it might be worth some consideration.

< ロ > < 同 > < 回 > < 回 > .

Definition

We say that two similarity indexes sim_1 and sim_2 satisfying axioms S1–S5 are consistent if for all sets $A, B, C \subseteq U$,

 $sim_1(A,B) < sim_1(A,C) \iff sim_2(A,B) < sim_2(A,C).$

Theorem

If sim_1 and sim_2 are consistent then for each $X \subseteq U$, $Opt_{sim_1}(X) = Opt_{sim_2}(X)$.

Theorem

- The following three similarity indexes are consistent: Marczewski-Steinhaus, Symmetric Tversky, and Dice-Sørensen.
- The Marczewski-Steinhaus index and Braun-Blanquet index are not consistent.

• □ ▶ • □ ▶ • □ ▶

Finding Optimal Approximations

- Let *sim* be a given similarity measure.
- We know that some optimal approximation O does exist, and that $\underline{A}(X) \subseteq O \subseteq \overline{A}(X)$.
- We also know that any optimal approximation of X, is the union of the lower approximation of X and some element A ∈ B(X) ∪ {0}.

Definition

Let $X \subseteq U$, and $O \in D$ Sets. We say that O is an *intermediate approximation* of *X*, if

$$\underline{\mathbf{A}}(X) \subseteq \mathsf{O} \subseteq \overline{\mathbf{A}}(X)$$

The set of all intermediate approximations of X will be denoted by IA(X).

● An *intermediate approximation* is all 'pink rectangles' ∪ any collection of 'blue rectangles'.

Definition (Ratio common/distinct)

For every $X, Y \subseteq U$, such that $X \setminus Y \neq \emptyset$, we define the index $\rho(X, Y)$, called the *ratio of common to distinct elements*, as follows

$$\rho(X,Y)=\frac{\mu(X\cap Y)}{\mu(X\setminus Y)}.$$

Note that $\rho(X, Y)$ is sound only if μ is finite and null-free.

- Assume $\mu(X)$ = area of X.
- Y = The Rough Set
- X = Blue rectangle pointed by green arrow: $\rho(X, Y) > 1$.
- X = Blue rectangle pointed by black arrow: $\rho(X, Y) > 1$.
- *X* = Blue rectangle pointed by blue arrow: $\rho(X, Y) < 1$.
- X = Blue rectangle pointed by red arrow: $\rho(X, Y) < 1$.

Theoretical Foundations

- Now, we assume that our similarity measure is Marczewski-Steinhaus index sim_{MS}(X, Y) = μ(X∩O)/μ(X∪O).
- It is fairly general, often used, has convincing intuition, and it is consistent with two other popular indexes.

Lemma

Let $X \subseteq U$, $O \in IA(X)$, $A, B \in \mathbb{B}(X)$, $A \cap O = \emptyset$, and $B \subseteq O$. Then

- $3 \ \, sim_{MS}(X, \mathsf{O} \setminus \mathsf{B}) \leq sim_{MS}(X, \mathsf{O}) \iff \rho(\mathsf{B}, X) \leq sim_{MS}(X, \mathsf{O}) \ \, \Box$
 - if O ∈ Opt(X), then O = <u>A</u>(X) ∪ B₁ ∪ ... ∪ B_k, for some k, where each B_i ∈ 𝔅(X), i = 1,...,k. The above lemma allows us to explicitly define these B_i ∈ 𝔅(X) components.

Lemma

Let $X \subseteq U$, $O \in IA(X)$, $A, B \in \mathbb{B}(X)$, $A \cap O = \emptyset$, and $B \subseteq O$. Then

- $sim_{MS}(X, O \cup A) \geq sim_{MS}(X, O) \iff \rho(A, X) \geq sim_{MS}(X, O)$
- $3 \ \, sim_{MS}(X, \mathsf{O} \setminus \mathsf{B}) \leq sim_{MS}(X, \mathsf{O}) \iff \rho(\mathsf{B}, X) \leq sim_{MS}(X, \mathsf{O}) \ \, \Box$
 - We know from if O ∈ Opt(X), then O = <u>A</u>(X) ∪ B₁ ∪ ... ∪ B_k, for some k, where each B_i ∈ 𝔅(X), i = 1,...,k.
 - The above lemma allows us to explicitly define these B_i ∈ 𝔅(X) components.

Theorem

For every $X \subseteq U$, the following two statements are equivalent:

< ロ > < 同 > < 回 > < 回 > < 回 > <

Towards a Greedy Algorithm

• Assume that
$$r = |\mathfrak{B}(X)|$$
, $\mathfrak{B}(X) = \{B_1, \dots, B_r\}$ and also $i \leq j \iff \rho(B_i, X) \geq \rho(B_j, X)$.

Definition

Let $O_0, O_1, \ldots, O_r \in IA(X)$ be the sequence of intermediate approximations of X defined for $i = 0, \ldots, r-1$ as follows: $O_0 = \underline{A}(X)$ and

$$\mathsf{O}_{i+1} = \left\{ egin{array}{cc} \mathsf{O}_i \cup \mathbb{B}_{i+1} & ext{if } sim_{MS}(X, \mathsf{O}_i \cup \mathbb{B}_{i+1}) \geq sim_{MS}(X, \mathsf{O}_i) \\ \mathsf{O}_i & ext{otherwise.} \end{array}
ight.$$

Clearly $\underline{\mathbf{A}}(X) = O_0 \subseteq O_1 \subseteq \ldots \subseteq O_r \subseteq \overline{\mathbf{A}}(X)$.

 We claim that at least one of these O_i's is an optimal approximation.

- Let X be our green rough set,
- O₈ = <u>A</u>(X) ∪ B₁ ∪ ... ∪ B₈ is an optimal approximation, the only one in this case.

イロト (語) (語) (語)

Theorem

For every $X \subseteq U$, we set $r = |\mathfrak{B}(X)|$, and we have

- $sim_{MS}(X, O_{i+1}) \ge sim_{MS}(X, O_i)$, for i = 0, ..., r 1.
- ② If $\rho(B_1, X) \le sim_{MS}(X, \underline{A}(X))$ then $\underline{A}(X) \in Opt(X)$.
- 3 If $\rho(B_r, X) \ge sim_{MS}(X, \overline{\mathbf{A}}(X))$ then $\overline{\mathbf{A}}(X) \in \mathbf{Opt}(X)$.
- If $sim_{MS}(X, O_p) \le \rho(B_p, X)$ and $sim_{MS}(X, O_{p+1}) > \rho(B_{p+1}, X)$, then $O_p \in Opt(X)$, for p = 1, ..., r - 1.
- If $O_p \in Opt(X)$, then $O_i = O_p$ for all i = p + 1, ..., r. In particular $O_r \in Opt(X)$.
- **(**) $O \in Opt(X) \implies O \subseteq O_p$, where *p* is the smallest one from (5).

Algorithm (Finding the Greatest Optimal Approximation)

Let $X \subseteq U$.

• Construct $\underline{\mathbf{A}}(X)$, $\overline{\mathbf{A}}(X)$, and $\mathfrak{B}(X)$. Assume $r = |\mathfrak{B}(X)|$.

3 For each $B \in \mathfrak{B}(X)$, calculate $\rho(B, X) = \frac{\mu(B \cap X)}{\mu(B \setminus X)}$.

- Order ρ(B, X) in decreasing order and number the elements of 𝔅(X) by this order, so 𝔅(X) = {B₁,...,B_r} and i ≤ j ⇐⇒ ρ(B_i, X) ≥ ρ(B_j, X).
- If $\rho(B_1, X) \leq sim_{MS}(X, \underline{A}(X))$ then $O = \underline{A}(X)$.
- $If \rho(B_r, X) \geq sim_{MS}(X, \overline{\mathbf{A}}(X)) \ then \ \mathbf{O} = \overline{\mathbf{A}}(X).$
- Solution Calculate O_i from i = 0 until $sim_{MS}(X, O_{p+1}) > \rho(B_{p+1}, X)$, for p = 0, ..., r-1, and set $O = O_p$.

From the main theorem we have that O is the greatest optimal approximation, i.e. $O \in \mathbf{Opt}(X)$, and for all $O' \in \mathbf{Opt}(X)$, $O' \subseteq O$. We also know that $sim_{MS}(X,O') = sim_{MS}(X,O)$.

- This *greedy* algorithm has a complexity of $C_1 + C_2 + O(r\log r)$, where C_1 is the complexity of constructing $\underline{A}(X)$, $\overline{A}(X)$, and $\mathfrak{B}(X)$; while C_2 is the complexity to assign $\mu(x)$ for each $x \in U$.
- We know that $C_1 = O(|U|^2)$, and clearly $C_2 = O(|U|)$.
- The most crucial line of the algorithm, line (6), runs in O(r), but line (3) involves sorting which has complexity O(rlogr). Since r < |U|, the total complexity is $O(|U|^2)$.
- The algorithm gives us the greatest optimal approximation O, however the whole set Opt(X) can easily be derived from O just by subtracting appropriate elements of B(X).

Applications

- The algorithm can also be used for any similarity measure sim that is consistent with the Marczewski-Steinhaus index sim_{MS}.
- The algorithm is based on the two fundamental assumptions: the set ESets is a partition, and the similarity measure is sim_{MS} , so the ration ρ can be used to pick appropriate elements from the border \mathfrak{B} .
- If any of the is not satisfied, the algorithm cannot be used.
- So, what about Rough Sets induced by Coverings?
- It turns out our approach can also be applied to some Rough Sets induced by Coverings.
- The idea is to replace coverings by appropriate equivalent partitions.

Components

- All eight components for a given set *U* and subsets $\mathbb{C} = \{C_1, C_2, C_3\}$.
- In general: $\mathbb{C} = \{C_i \mid i = 1...n\}$ and $C^{(i_1,...,i_n)} = C^{i_1}_1 \cap ... \cap C^{i_n}_n$, where $i_k = 0, 1$, and $C^0_i = C_i, C^1_i = U \setminus C_i$ for k = 1, 2, ..., n.
- Let: comp(\mathbb{C}) = { $C^{(i_1,...,i_n)} | i_k = 1, 2, k = 1, 2, ..., n, C^{(i_1,...,i_n)} \neq \emptyset$ }.
- $\operatorname{cov}(\mathbb{C}) = \mathbb{C} \cup \{U \setminus \bigcup_{i=1}^{n} C_i\}$ is a covering of U.
- We might assume $U = \bigcup_{i=1}^{n} C_i$, if convenient.
- $comp(\mathbb{C})$ is partition.
- We can derive comp(ℂ) from cov(ℂ) and vice versa, so we may consider them as equivalent.

-

- Let *U* be a set and let \mathbb{C} be a nonempty family of nonempty subsets of *U*.
- A non-empty set X ⊆ U is *definable* by C if it can be constructed from the elements of C by means of set operations ∪, ∩ and \.
- The family of all sets *definable* by \mathbb{C} will be denoted by definable(\mathbb{C}).
- \mathbb{C} does not have to be a covering.

Theorem

Let U be a set and \mathbb{C} a family of nonempty subsets of U.

•
$$U = \bigcup_{C^{(\alpha)} \in \operatorname{comp}(\mathbb{C})} C^{(\alpha)}.$$

- **2** For all $C^{(\alpha)}, C^{(\beta)} \in \text{comp}(\mathbb{C})$, we have $C^{(\alpha)} \cap C^{(\beta)} = \emptyset \iff \alpha \neq \beta$.
- ③ Every set X ∈ definable(\mathbb{C}) is a union of some components of \mathbb{C} , i.e. X ∈ definable(\mathbb{C}) $\iff \exists C^{(\alpha_1)}, \dots, C^{(\alpha_k)} \in \text{comp}(\mathbb{C}).$ X = $C^{(\alpha_1)} \cup \dots \cup C^{(\alpha_k)}$.

Rough Sets Defined By Coverings

- There are several, similar but not identical models.
- *U* is a finite and non-empty universe of elements, and ℂ is its *covering*.
- The pair $AS = (U, \mathbb{C})$ is an *covering approximation space*.
- For every x ∈ U, the set N(x) = ∩{C ∈ C | x ∈ C} is called the neighborhood of an element x ∈ U.
- Elementary sets: $\mathsf{ESets} = \{N(x) \mid x \in U\}.$
- Definable sets: DSets, are set unions of elementary sets.
- Lower approximations are defined differently, for example:

(a)
$$\underline{\mathbf{A}}_{a}(X) = \bigcup \{ C \in \mathbb{C} \mid C \subseteq X \}.$$

(b)
$$\underline{\mathbf{A}}_{b}(X) = \{x \mid N(x) \subseteq X\}.$$

• Upper approximation are defined differently, for example:

(a)
$$\underline{\mathbf{A}}^+(X)\overline{\mathbf{A}}_a(X) = \underline{\mathbf{A}}_a(X) \cup \bigcup \{N(x) \mid x \in X \setminus \underline{\mathbf{A}}_a(X)\}.$$

(b)
$$\overline{\mathbf{A}}_b(X) = \{x \mid N(x) \cap X \neq \emptyset\}.$$

• Optimal approximation of X, w.r.t similarity measure:

$$sim(X, O) = \max_{A \in DSets} (sim(X, A)).$$

An efficient algorithm from classical rough sets does not work.

When Partitions Are Derived From Coverings

- *U* is a finite and non-empty universe of elements, and ℂ is its *covering*.
- The pair $AS = (U, \mathbb{C})$ is an *covering approximation space*.
- comp(ℂ) is the set of all components of ℂ.
- Elementary sets: $\mathsf{ESets} = \mathbb{C}$.
- Definable sets: DSets = definable(ℂ), i.e. all sets that can be derived from ℂ by applying operations ∪, ∩ and \.
- Lower approximation of X:

 $\underline{\mathbf{A}}^{c}(X) = \bigcup \{ C^{(\alpha)} \mid C^{(\alpha)} \in \operatorname{comp}(\mathbb{C}) \land C^{(\alpha)} \subseteq X \}.$

- Upper approximation of X: $\overline{\mathbf{A}}^{c}(X) = \bigcup \{ C^{(\alpha)} \mid C^{(\alpha)} \in \operatorname{comp}(\mathbb{C}) \land C^{(\alpha)} \cap X \neq \emptyset \}.$
- Optimal approximation of X, w.r.t similarity measure:

$$sim(X,O) = \max_{A \in DSets} (sim(X,A)).$$

An efficient algorithm from classical rough sets DOES work.
 <u>A</u>^c(X), <u>A</u>^c(X) are never less tight than appropriate approximations derived directly from coverings.

- One intriguing problem, still open, is the relationship between the measure μ and the equivalence relation E.
- The relation *E* represents the knowledge of an approximation space (*U*, *E*) and defines the set DSets.
- Our definition of optimal approximation indicates that an optimal approximation is a function of both the measure μ and the equivalence relation *E*, but how μ and *E* relate is an open problem.

< ロ > < 同 > < 回 > < 回 > .

THANK YOU

QUESTIONS?

Ryszard Janicki On Optimal Approximations for Rough Sets 32/32

イロト (語) (語) (語)