Analysis of Healthcare Data -Explainability using Language Models and Rough-fuzzy possibilities

Lipika Dey

"AI in healthcare is said to be the hope, the hype, and the promise" - Nazar et al., 2021

Post hoc XAI

Accuracy Reliability Explainability

Interpretability

Al in healthcare

Personal Digital Healthcare

Autor Ster	Term Balling B	
Gala/Kina	Note	
lan.	New Any May for an other secondation regarding for diseases through and computered to clean. Recommending and they and fulfilling or littles at the present condition. Not associate read week.	
inneren et	Any has had her 'reacting operation' since for fast apportfasts. The second free as the reaching consuming of M participants with the works in Advances advantages are seen in the process when the reaction and the Advances advantages are seen in the process advances are set advances and advances and advances advances advances are worked to obtain the advances advances advances advances are worked to obtain the advances advances advances advances and worked to obtain the advances advanc	
arwara •••	Annuments are assessed in the "Annument production" states are last separate results, reports also have results and any set of particular that the particular states and and any set of particular states and any particular states and and any set of particular states and particular states and particular states and any particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular states and particular st	
1010 1010 1010	Shirin Tarahan Amatan International A. Research a tari bar approximated Research and the second structure of the second structure of the Networks and a ferring the content internal and ferrings and the model for another under chiefer.	
in the second second	the second of the 'restant' density and the extent of the second of the	

Length of Hospital sta / Hospital readmissio

Adverse Drug Effect Prediction

Prediction - Sepsis severit Medical Procedure

Explainable AI - XAI

Explainability of model - knowledge about the model

- Important for a machine learning engineer to design optimal models

Interpretability - ability of the model to provide causal association between input and output

- Meaningful insight about the logic behind the decision arrived at using the data
- Important for Healthcare end-users

Healthcare Data

Patient Vitals

- Heart rate
- Respiratory rate
- Temperature
- Oxygen saturation
- Intubated Yes /No
- Disease names
- Drugs

Nursing Notes

Advantage of using text for prediction

- 1. Details about patient's health status
- 1. Interpretability is better

- Detailed notes from - doctor, nurse, pathologist, medical technologist

Length of Stay at ICU / Hospital - a prediction problem

The pt is a complicated 62yo man who was transferred from ajh last evening with mrsa bacteremia and pnx. Pt arrived via EMS, intubated, sedated on Propofol 15mcg/kg-min, on Dopa gtt at 5mcg/kg-min. Transferred to Big Boy bed with 6-person assist, MICU-A monitor, and MICU-A IV pumps. Dopamine titrated up to max of 6.5mcg/kg-min with SBP 90's-80's, Propfol weaned from 15mcg/kg-min -> 12. Levo-phed started at 0.05mcg/kg-min and dopa weaned to 4.0mcg at time of shift report. Propofol d/c'd, and fentanyl and midazolam started at 25mcg/kgmin and 0.5mg/hr, respectively Pt turned upon admission; SBP by a-line dropped to 70's with + wave-form, and SpO2 dropped to 80's Skin breakdown noted over back of neck, sloughed skin with serosanguinous drng OTA on arrival.....NaHCO3 3 amps given after 2nd ABG when acidosis was worsening with repsiratory intervention....Daughter in to see pt. Gravity of pt status discussed with daughter Patient remains on mechanical ventilation; switched to PCV due to high Paw.PIP improved as well as Pa02, but patient still has significant metabolic acidosis. Renal insufficiency, patient may need to be dialysised.BS diminished, suctioned for small amount of clear thick tenacious type of secretion. the micu team is concerned that the pt may have mrsa endocarditis and the plan is to obtain a tte later today. he continued to have a difficult noc with persistent fevers, hypoxia, acidosis, copd/emphysema, asbesteosis, endometriosis with hematuria as well as requiring an increase in pressor support.....

Can admission statistics predict Length of Stay in ICU / Medical procedure requirement

Can these decisions be interpreted by healthcare professionals?

Nursing Notes

Deep Neural Networks for Predicting ICU LOS

Can pre-trained LLMs be used to summarize the notes?

- Predicted Length of Stay:
- Given the complex medical condition, including acute respiratory distress, pneumonia, hypertension, and ESRD, the patient may require an extended hospital stay for stabilization and management of his multiple health issues. The length of stay could range from several days to potentially a week or more, depending on the response to treatment, resolution of acute symptoms, and achievement of stable medical condition. Close monitoring of respiratory status, blood pressure control, antibiotic therapy, and renal replacement therapy transition would be necessary during the hospitalization. Discharge from the ICU may be considered if the patient becomes medically stable, but overall, a prolonged length of stay is anticipated for comprehensive management and optimization of the patient's health.

musion. The patient is aware of and agreeable to the plan of care.

Local Interpretable Model-Agnostic Explanations

Explains each individual prediction

For a given black-box classifier

For an input - generates "similar" samples through perturbation

 $\operatorname{argmin}_{g} \mathcal{L}(f, g, \pi_{x}) + \Omega(g)$

minimizes the locality-aware loss $L(f,g,\Pi_x)$ measuring how unfaithful *g* approximates the model to be explained *f* in its vicinity Π_x with least complexity

Understanding individual predictions

Contribution of each term in Clinical note towards the final prediction

Local interpretability not robust

- LIME focuses on individual instances *overlooks global patterns*
- Clinicians require both pictures to make informed decision -

understand each patient with respect to a cohort

- Good for structured can't handle text well
 - Discrete Words don't provide the full picture
 - "No fever" vs "fever" can change the sense

Handling synonyms - "diabetes" vs "high blood sugar"

We want them all!

High Interpretability

Local and Global context - individual patient along with cohort

Powerful Model

Model accuracy cannot be compromised

Unstructured \rightarrow Structured Representation

Unified Medical Language

System (UMLS) - brings

together many health and

biomedical vocabularies and

standards to enable

interoperability

Generating Discrete Representations from text

Number of features - very large

O(4000 - 5000) features for patients admitted with one major disease

Features	Patient 1	Patient 2
accidental falls	1	1
anxiety	1	0
asleep	1	0
bowel ischemic	1	0
diabetes	1	0
hematochezia	1	0
jaundice	1	0
oliguria	1	0
pain	1	0
premature ventricular contraction	1	1
activity tolerance	0	1
anterior fascicular block	0	1
basilar rales	0	1
bundle-branch block	0	1
cough	0	1
discomfort	0	1
dyspnea	0	1
knee discomfort	0	1
pneumonia	0	1
premature ventricular contraction	1	1
sepsis	0	1

Autoencoders for representation of Nursing Notes

Binary vector of 4541 health conditions – Large and Sparse

Clustering Patients – obtaining patient cohorts

2000+ Pneumonia patients

SHAP explainers

- Uses game theory concepts to compute feature contributions for each prediction
- Provides both local and global explanations
 - Offers insights into individual predictions (local explanations)
 - Quantifies feature importance across the entire dataset (global explanations)
- Decomposes the model's prediction into the contributions of individual features based on their importance

SHAP value computation

The SHAP value ϕ_i for feature *i* is calculated using the following equation:

$$\phi_i = \sum_{\mathcal{T} \subseteq \mathcal{S} \setminus \{i\}} rac{|\mathcal{T}| \cdot |\mathcal{S}|! \cdot (|\mathcal{S}| - |\mathcal{T}| - 1)!}{|\mathcal{S}|!} [f(x_{\mathcal{T} \cup \{i\}}) - f(x_{\mathcal{T}})]$$

where:

• \mathcal{T} represents a subset of \mathcal{S} excluding feature i.

- Computes for members of Power-set of S
- Finds features that maximize intracluster and minimize inter-cluster similarity
- x_T and $x_{T\cup\{i\}}$ are instances with only the features in T and with features T plus feature i, respectively.
- $|\mathcal{T}|$ is the number of features in subset \mathcal{T} .

SHAP explanations for clusters

Clusters for Pneumonia Patients

Clusters	Number of patient	key diseases present	key disease absence	Key drug category administrated	Key drug category not administrated	Mode LOS	Most patients in the age group
Cluster 0	175	Endometriosis (86%), Diabetes (74%)	Paroxysmal familial ventricular fibrillation, Acquired abnormality of atrium, Influenza	antidiabetic hormone, insulin, hypnotic/anesthetic	hypoglycemic agent	7 days	60-80 years
Cluster 1	174	Influenza(70%)	Lung Consolidation, Acquired abnormality of atrium	antiviral medication for influenza	hypoglycemic agent	7 days	60-80 years
Cluster 2	205	Acquired abnormality of atrium(99%), Left atrial abnormality(98%)	Paroxysmal familial ventricular fibrillation	analgesic/antiplatelet, proton pump inhibitor	vasopressor	4 days	60-80 years
Cluster 3	228	Paroxysmal familial ventricular fibrillation(91%)	Influenza, Acquired abnormality of atrium, Left atrial abnormality	antidiabetic hormone, vasopressor	hypoglycemic agent, corticosteroid	9 days	60-80 years
Cluster 4	405	Lung Consolidation(93%)	Paroxysmal familial ventricular fibrillation, Acquired abnormality of atrium, Left atrial abnormality, Endometriosis	carbohydrate supplement, hypoglycemic agent, proton pump inhibitor	antidiabetic hormone, insulin, analgesic/ antiplatelet	6 days	60-80 years
Cluster 5	65	Pleural effusion disorder(92%), Bilateral pleural effusion(78%)	Lung Consolidation, Paroxysmal familial ventricular fibrillation	hypoglycemic agent, diuretic, analgesic/ antiplatelet	antidiabetic hormone	5 days	Above 80 years
Cluster 6	51	Atrial Premature Complexes(84%)	Lung Consolidation, Paroxysmal familial ventricular fibrillation	Vasopressor, antidiabetic hormone, proton pump inhibitor, beta- blocker, anticonvulsant/ neuropathic pain agent	Insulin	8 days	Above 80 years
Cluster 7	31	Pneumonia (71%), Edema(50%)	Lung Consolidation, Paroxysmal familial ventricular fibrillation	Corticosteroid, Vasopressor	antidiabetic hormone, proton pump inhibitor, hypoglycemic agent, hypnotic/anesthetic, diuretic	9 days	60-80 years
Cluster 8	101	Left anterior fascicular block(81%), Left axis deviation(60%)	Lung Consolidation, Pleural effusion disorder	hypoglycemic agent, beta-blocker	antidiabetic hormone, proton pump inhibitor, opioid analgesic	7 days	Above 80 years
Cluster 9	120	Abnormal T-wave (95%)	Lung Consolidation, Acquired abnormality of atrium, Left atrial abnormality	carbohydrate supplement, analgesic/ antiplatelet, beta-blocker	proton pump inhibitor, antidiabetic hormone, benzodiazepine	5 days	60-80 years
Cluster 10	516	No diseases predominantly occurred	Lung Consolidation, Paroxysmal familial ventricular fibrillation, Pleural effusion disorder, Acquired abnormality of atrium	hypoglycemic agent	antidiabetic hormone, Vasopressor, proton pump inhibitor	6 days	60-80 years
Cluster 11	35	Ventricular hypertrophy(89%)	Lung Consolidation, Paroxysmal familial ventricular fibrillation, Abnormal T-wave	hypoglycemic agent, analgesic/ antiplatelet	antidiabetic hormone, Vasopressor	6 days	Above 80 years

Using Cohorts to understand new patients

Prediction for new patient - using cohort information

Risk Prediction and Recovery Pathways

Transition Probabilities can be computed for each cluster

Predicting Risk for Sepsis Patients

SEPSIS is a generic term - Severity score is determined based on multiple conditions

Sepsis Severity score = f(Temp., Heart rate, Resp. rate, WBC count, Organ failures)

- SIRS Severity Score 1
- Sepsis Severity Score 2
- Severe Sepsis Severity Score 3
- · Contia Charle Covarity Coora · 1

Information gathered from clinical notes

Using Cohorts to predict outcome for newly admitted patients after 3 days

MIMIC-III, v1.4, 1593 patients identified with SEPSIS on admission

Initially grouped into 8 cohorts

It's the severity score that matters

Distribution of features across clusters

Top 20 symptoms spread across clusters

Feature distribution across outcomes

- _____ neg_fever
- cough
- atrial premature complexes
- acidosis
- left_axis_deviation
- dyspnea
- body substance discharge
- pneumonia

Discharged patients had very few symptoms

Deceased and Deteriorate, Persistent and Improved have similar distribution of features

No clear picture emerging at individual symptom level

Cluster descriptions obtained using SHAP explainers

Subgroup	#Patients	prominent diseases or symptoms
A1	298	sepsis with hypotension, acidosis, diabetes, respiratory distress, pain, tachycardia
A2	339	sepsis with loose stool, hypotension absence of acidosis, pain, fever
A3	155	sepsis with dyspnea, pain, hypotension, airway disease absence of diabetes, acidosis
A4	105	sepsis with hypotension, skin infection, pain, urinary tract infection, kidney diseases
A5	128	sepsis with basilar rales, dyspnea, hypotension, edema, premature ventricular contraction (PVC), urinary tract infection (UTI), heart disease
A6	284	sepsis with tachycardia, atrial fibrillation, atrial premature complexes
A7	91	sepsis with premature ventricular contraction (PVC), hypotension, thick sputum, loose stool, diabetes, erythema, basilar rales, atrial fibrillation
A8	193	sepsis with myocardial infarction, bundle-branch block, ventricular hypertrophy, anterior fascicular block

Predicting outcome after 3 days from admission

Model for predicting	Accuracy of prediction
BlueBERT representation of admission notes	43%
Autoencoded UML features (500 dim)	70%
Autoencoded UML features (500 dim) + cohort information	75%

Transition probabilities to next stage for each cluster

	Discharge	Improve	Persistent	Deteriorate	Decease	Unknown			
A1 -	0.01	0.32	0.52	0.07	0.07	0			
A2 -	0.04	0.39	0.45	0.04	0.03	0.06			
A3 -	0.03	0.34	0.5	0.02	0.02	0.1			
sdno.fqn	0.03	0.2	0.55	0.09	0.06	0.08			
Patient S S	0.01	0.3	0.56	0.06	0.02	0.04			
A6 -	0.05	0.4	0.31	0.07	0.1	0.08			
A7 -	0.01	0.32	0.53	0.05	0.03	0.05			
A8 -	0.04	0.39	0.31	0.04	0.13	0.09			
	Disk in Change?								

Risk in Stage2

Zoom in - symptoms responsible for state transitions

Individual Patients

Atrial premature com plexes Sepsis No melanoma Weakness Muscle weakness Urinary tract infectio nHematuria Osteoporosis No urosepsis Benign hematuria Hypertensive disease No cough No hypotension Mental depression No dehydration

Thick_sputum pulmonary_edema

#cough#nausea#diabetes#anasarca#agitation#yellow_sputum#hemodynamically_stable#anxiety#edema#able_to_communic ate#dependent_for_dressing#fatigue#pressure_ulcer#premature_ventricular_contractions#body_substance_discharge#dyspne a#pain#septic_shock#premature_ventricular_contraction#respiratory_distress#clear_sputum#tingling_in_fingers#intraventricul ar_conduction_defect#feeling_relief#gastrointestinal_leak_nos#chest_pain Thick_sputum pulmonary edema #cough #nausea #diabetes #anasarca *#agitation* #yellow sputum #hemodynamically stable *#anxiety* #edema #able to communicate #dependent for dressing #fatigue *#*pressure ulcer *#premature ventricular contractions #*body substance discharge #dyspnea #pain *#*premature ventricular contraction *#respiratory* distress #tingling_in_fingers #intraventricular conduction defect

cardiac problem premature ventricular contractions #mediastinitis #thick sputum #empyema #ulceration #bacteremia *#aortic coarctation #anxiety #*premature ventricular contraction #infection #pleural effusion (disorder) #candidemia #deep vein thrombosis #edema #candidiasis #tachycardia #hypotension #yellow sputum #hernia #diabetes

Shapley Values for Building a Clinical Decision Support System (Bienefeld et al., 2023)

Predict the onset of **Delayed Cerebral Ischemia** in patients with aneurysmal subarachnoid hemorrhage (aSAH)

Predicted score - 0.8

Based on static and dynamic features

Pink - high risk

Blue - low risk

What next?

Can rough-fuzzy ideas be used for explanations?

Persistant	Improved	Discharged	Deceased	
able_to_commu	asleep	abdomen_distended	abnormal_mental_state	
ache	cough	abnormal_t-wave	agitation	
alcohol_abuse	cyst	abrasion	anuria	
anxiety	dyspnea	agitation	chronic_diarrhea	
atrial_premature	erythema	atrial_abnormalities_on_ele	chronic_kidney_diseases	
brown_urine	fever	atrial_premature_complexe	chronic_multifocal_osteomyelitis	
clammy_skin	hypotension	brown_urine	diabetes	
diabetes	incisional_pain	comfort	diarrhea	
discomfort	lung_consolidati	complete_pharyngeal_cont	exanthema	
feeling_relief	pain	confusion	fatigue	
hemodynamicall	sepsis	cough	hemorrhage	
hypotension	septicemia	crohn_disease-like_reaction	hypotension	
insomnia	tachycardia	diabetes	hypovolemia	
muscle_cramp		dyspnea	keratoconjunctivitis_sicca	
neg_fever		edema	kidney_diseases	
neg_nausea		erythema	kidney_failure	
oliguria		femoral_fractures	mental_orientation	
pain		fracture	multiple_lesions	
pallor_of_skin		grimaces	neg_delirium	
premature_vent	ricular_contraction	hemodynamically_stable	neg_ischemia	
sepsis		hypotension	neg_nausea	
spasm		loose_stool	neg_necrosis	\boldsymbol{T}
urethral_spasm		mouth_breathing	neg_vomiting	1-
urinary_tract_in	fection	neg_dysphagia	peripheral_vascular_diseases	Ь.
		neg_fever	rash	116
		nonverbal	renal failure	T

T-norm and Implicator functions can help in quantifying the dependencies between sets of attributes

To be explored ..

Contribution of combination of features to classes

For each member - predict outcome possibilities based on presence of features

Track changes in symptoms and dynamically predict next outcome

Thank You!