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Partitions

A standard partition of U is made of C1, . . . ,Cn ⊆ U such
that

Ci ∩ Cj = ∅ and C1 ∪ . . . ∪ Cn = U.

C1, . . . ,Cn are called equivalence classes.

Example:

C1 = {a, b} and C2 = {c} form a partition of {a, b, c}.

In a standard partition,
each element fully belongs to exactly one class.



Fuzzy orthopartitions

Fuzzy orthopartition:
each element belongs to a class with a degree x so that

• x ∈ [0, 1] (vagueness);

• a ≤ x ≤ b, with [a, b] ⊆ [0, 1] (uncertainty).

Example:

• a ∈ C1 (standard partition {C1 = {a, b},C2 = {c}});
• a ∈ C1 with an unknown degree in [0.3,0.7] (fuzzy
orthopartition).

Fuzzy orthopartitions are generalized partitions involving both
vagueness and uncertainty.



Fuzzy orthopartitions

Fuzzy orthopartitions generalize

• standard orthopartitions
(partitions with uncertainty),

• Ruspini partitions
(partitions with vagueness).



Orthopartitions based on classical sets (1/2)

An orthopartition is understood as a partition where

• the membership class of some elements is known
with certainty,

• whereas the membership class of the remaining
elements is completely unknown.

An orthopartition is a generalized partition
where blocks are orthopairs, namely pairs of disjoint
subsets.

Example:
C1 = ({a, b}, {c}}) and C2 = ({c}, {a, b}) form an or-
thopartition of {a, b, c, d}.

a, b ∈ C1, c ∈ C2, d ∈ ?.



Orthopairs and Rough Sets

U : universe
R : equivalence relation
X : subset of U

Orthopair:

(L(X ),U \ U(X ))



Orthopartitions based on classical sets (2/2)

O = {(P1,N1), . . . , (Pn,Nn)} is an orthopartition of U if
and only if

1 Pi ∩Pj = ∅, Pi ∩Bj = ∅, and Pj ∩Bi = ∅, for each i ̸= j
(the classes are disjoint),

2
⋃n

i=1(Pi ∪ Bi ) = U
(covering requirement),

3 for each u ∈ U, if u ∈ U then there exists j ̸= i such
that u ∈ Bj

(the uncertainty must be shared by at least two
classes),

where Bi = U \ Pi ∪ Ni .

Andrea Campagner and Davide Ciucci. ”Orthopartitions and soft clus-

tering: soft mutual information measures for clustering validation.”

Knowledge-Based Systems.



Ruspini partitions

A Ruspini partition is a generalized partition
where equivalence classes are fuzzy sets.
Enrique H Ruspini. A new approach to clustering. Information and
control, 15(1):22–32, 1969

• Fuzzy sets are sets whose elements have degrees of membership;

• A fuzzy set is a function π : U → [0, 1], where
π(u) is the degree to which u belongs to U.

A Ruspini partition of U is a family π = {π1, . . . , πn} of fuzzy sets on
U (πi : U → [0, 1]) such that

π1(u) + . . .+ πn(u) = 1, for each u ∈ U.

Example:
{π1, π2} is a Ruspini partition of {a, b, c}, where

π1(a) + π2(a) = 0.2 + 0.8 = 1, π1(b) + π2(b) = 0.5 + 0.5 = 1, and

π1(c) + π2(c) = 1 + 0 = 1.



Intuitionistic fuzzy sets

Fuzzy orthopartitions are collections of intuitionistic fuzzy sets.

Definition:
An intuitionistic fuzzy set A of a universe U is defined as

A = (µ, ν)

where the maps µ : U → [0, 1] and ν : U → [0, 1] satisfying the following
condition: for each u ∈ U

µ(u) + ν(u) ≤ 1.

• µ(u): degree of membership,

• ν(u): degree of non-membership of u to A,

• h(u) = 1− (µ(u) + ν(u)): hesitation margin of u to A.

Atanassov, Krassimir T., and Krassimir T. Atanassov. Intuitionistic fuzzy

sets. Physica-Verlag HD, 1999.



Fuzzy orthopartitions

An element u belongs to the class i with a degree of the interval
[µi (u), µi (u) + hi (u)], where µi (u) + hi (u) = 1− νi (u).

O = {(µ1, ν1), . . . , (µn, νn)} is a fuzzy orthopartition of U if and
only if for each u ∈ U:

1
∑n

i=1 µi (u) ≤ 1 (disjoint blocks),

2 µi (u) + hj(u) ≤ 1, for each i ̸= j (disjoint classes),

3
∑n

i=1 µi (u) + hi (u) ≥ 1 (covering condition),

4 for each i ∈ {1, . . . , n} with hi (u) > 0, there exists
j ∈ {1, . . . , n} \ {i} such that hj(u) > 0 (the uncertainty
cannot regard only one class).

Stefania Boffa and Davide Ciucci. ”Logical entropy and aggregation of

fuzzy orthopartitions.” Fuzzy Sets and Systems 455 (2023): 77-101.



Example of a fuzzy orthopartition

The intuitionistic fuzzy sets (µ1, ν1), (µ2, ν2), and (µ3, ν3)

• form a fuzzy orthopartition of {u, v , z}.

T1 T2 T3

(µ1, ν1) (µ2, ν2) (µ3, ν3)
u (0.3, 0.2) (0.4, 0.3) (0, 0.7)
v (0.2, 0.4) (0.3, 0.2) (0.3, 0.3)
z (0, 0.5) (0.3, 0.4) (0.6, 0.2)

• describe the interest in three topics T1,T2, and T3 of three
different groups u, v , and z of users of a social network;

the users of u are interested in the topic T2

with a degree
from µ2(u) = 0.4 to 1− ν2(u) = µ2(u) + h2(u) = 0.7.



Orthopartitions as special fuzzy orthopartitions

An intuitionistic fuzzy set (µ, ν) so that µ, ν : U → {0, 1} is an

orthopair on U.

Theorem:
Let O = {(µ1, ν1), . . . , (µn, νn)} be a fuzzy orthopartition made of
orthopairs, then O is a crisp orthopartition of U.

Fuzzy Orthopartitions

Orthopartitions

Partitions



Ruspini partitions as special fuzzy orthopartitions

An intuitionistic fuzzy set (µ, ν) so that h(u) = 0 for each u ∈ U

is a fuzzy set on U.

Theorem:
Let O = {(µ1, ν1), . . . , (µn, νn)} be a fuzzy orthopartition made of
fuzzy sets, then O is a Ruspini partition of U.

Fuzzy Orthopartitions

Ruspini partitions

Partitions



Compatible Ruspini partitions

A fuzzy orthopartition O corresponds to a class of Ruspini
partitions ΠO.

π ∈ ΠO (π is compatible with O) if and only if O
could coincide with π, once the uncertainty is elimi-
nated from O
namely, the membership degree of elements to the classes is
precisely known.



Compatible Ruspini partitions

O becames a Rupini partition of ΠO , when we are able to
know the specific value of the interval [µi (u), µi (u)+hi (u)]
representing the degree to which u belongs to the class i.

• Let π = {π1, . . . , πn} be a Ruspini partition of U.

• Let O = {(µ1, ν1), . . . , (µn, νn)} be a fuzzy
orthopartition of U.

π is compatible with O if and only if µi ≤ πi ≤ µi + hi .

Example:

• Let π = {π1, π2} be a Ruspini partition of {u}.
• Let O = {(µ1, ν1), (µ2, ν2)} be a fuzzy orthopartition of {u}.

µ1(u) µ1(u) + h1(u) π1(u)

0.2 0.5 0.4

µ2(u) µ2(u) + h2(u) π2(u)

0.5 0.6 0.6

{π1, π2} is compatible with O.



Credal partitions

• Let U = {u1, . . . , ul} be a universe;

• let C = {C1, . . . ,Cn} be a standard partition of U.

A credal partition is a collection

m = {m1, . . . ,ml}

of basic belief assignments.

Thierry Denoeux and Marie-Hélène Masson. Evclus: evidential clustering

of proximity data. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 34(1):95–109, 2004.



Basic belief assignments

Let A ⊆ C, mi (A) ∈ [0, 1], called mass of belief, quantifies
the evidence supporting the claim

“ui belongs to a class of A”.

Example:

Let C = {C1,C2,C3} be a partition of {u1, u2, u3, u4},
m = {m1,m2,m3,m4} is a credal partition of {u1, u2, u3, u4}.

A m1(A) m2(A) m3(A) m4(A)
∅ 0.2 0 0 0.1

{C1} 0 0.1 0.1 0.1
{C2} 0.3 0.3 0 0.1
{C3} 0 0.1 0 0.2

{C1,C2} 0.2 0 0.1 0.1
{C1,C3} 0.1 0 0 0.1
{C2,C3} 0 0 0.2 0.3

C 0.2 0.5 0.6 0



Credal partitions and Fuzzy probabilistic partitions

• Credal partitions subsume the concept of fuzzy
probabilistic partitions.

• m = {m1, . . . ,ml} is a fuzzy probabilistic partition iff
m1, . . . ,ml are Bayesian bbas
(mi (A) = 0 for each |A| > 1).

Example:

A m1(A) m2(A) m3(A)
∅ 0 0 0
C1 0.1 0.2 0.4
C2 0.8 0.5 0.4
C3 0.1 0.3 0.2

{C1,C2} 0 0 0
{C2,C3} 0 0 0
{C1,C3} 0 0 0

{C1,C2,C3} 0 0 0



Compatible fuzzy probabilistic partitions

A credal partition m corresponds to a class of fuzzy proba-
bilistic partitions denoted with Πm.

In a dynamic situation, where the knowledge about the mem-
bership class of the elements

• is partial and

• increases (for example over the time)

so that partitions become fuzzy probabilistic partitions.



Ruspini and fuzzy probabilistic partitions

Fuzzy probabilistic and Ruspini partitions mathematically co-
incide. Both assign a degree to each element and class.

Example:

Ruspini partition = Fuzzy orthopartition

u1 u2 u3
π1(u) 0.2 0.5 0.6
π2(u) 0.8 0.5 0.4

Fuzzy probabilistic partition = Credal partition

A m1(A) m2(A) m3(A)

∅ 0 0 0
C1 0.2 0.5 0.6
C2 0.8 0.5 0.4
C 0 0 0



Credal partitions and Fuzzy orthopartitions
A first correspondence

A fuzzy orthopartition and a credal partition coincide,
when they are respectively equal to a Ruspini partition and a fuzzy
probabilistic partition that coincide.

Credal Partitions Fuzzy Orthopartitions

Fuzzy Probabilistic
Partitions

=
Ruspini Partitions



Credal partitions and Fuzzy orthopartitions
Second correspondence

• A fuzzy orthopartition O corresponds to a
class of Ruspini partitions ΠO ;

• A credal partition m corresponds to a
class of fuzzy probabilistic partitions Πm;

• Ruspini and fuzzy probabilistic partitions coincide.

Theorem:
Let O be a fuzzy orthopartition, then

|{m credal partition | ΠO = Πm}| =


0,

1,

∞.

Theorem:
Let m be a credal partition, there exists at most a fuzzy orthopar-
tition O so that ΠO = Πm.



Generalized fuzzy orthopartitions
Definition

O = {(µ1, ν1), . . . , (µn, νn)} is a generalized fuzzy or-
thopartition of U if and only if for each u ∈ U:

1
∑n

i=1 µi (u) ≤ 1 (disjoint blocks),

2
∑n

i=1 µi (u) + hi (u) ≥ 1 (covering condition).

• Stefania Boffa and Davide Ciucci. Unifying credal partitions
and fuzzy orthopartitions. Information Sciences.

• Stefania Boffa and Davide Ciucci. ”A correspondence
between credal partitions and fuzzy orthopartitions.”
International Conference on Belief Functions. Cham:
Springer International Publishing, 2022.



Generalized fuzzy orthopartitions
Hierarchy

Generalized Fuzzy Orthopartitions

Credal Partitions Fuzzy Orthopartitions

Fuzzy Probabilistic
Partitions

Orthopartitions



Generalized fuzzy orthopartitions
Interpretation in terms of masses of belief

• Generalized fuzzy orthopartitions: degrees of membership
and non-membership;

• Credal partitions: masses of belief.

Then, we could interpret fuzzy orthopartitions in terms of masses.

A generalized fuzzy orthopartition O can be understood as a
credal partition with an additional level of uncertainty: some
masses are known and others are not but need to satisfy particular
conditions.

O corresponds to one of the credal partitions of {m | ΠO = Πm}
once we have enough knowledge so that all masses are determined.



Entropy measures of fuzzy orthopartitions (1/2)

• Entropy measures for fuzzy orthopartitions;

• Entropy has an important role in Artificial Intelligence;

• Entropy measures with different scopes, have been defined
and studied by taking into account fuzzy sets,
intuitionistic fuzzy sets, and so on.

Let O be a fuzzy orthopartition, then

• an entropy measure quantifies the uncertainty contained in
O, describing the closeness of O to a Ruspini partition.

• the smaller the entropy of O is, the closer O is to a Ruspini
partition and less uncertainty contains.



Entropy measures of fuzzy orthopartitions (2/2)

Related articles:

• Stefania Boffa and Davide Ciucci. ”Logical entropy and
aggregation of fuzzy orthopartitions.” Fuzzy Sets and Systems.

• Stefania Boffa, Davide Ciucci, and Christophe Marsala
”Extending intuitionistic operations, orderings, and entropy
measures on generalized fuzzy orthopartitions” (Submitted)

We introduce entropies following two approaches:

• generalizing the logic entropy of standard partitions;
D. Ellerman, Counting distinctions: on the conceptual foundations

of Shannon’s information theory, Synthese 168 (2009) 119–149.

• generalizing the entropies of intuitionistic fuzzy sets;
Eulalia Szmidt and Janusz Kacprzyk. New measures of entropy

for intuitionistic fuzzy sets. In Ninth Int Conf IFSs Sofia, volume

11, pages 12–20, 2005.



Logical entropy of Ruspini partitions

Definition:
Let π = {π1, . . . , πn} be a Ruspini partition of U. Then, the logical
entropy of π is given by

H(π) =

∑
(u,v)∈U×U ditπ(u, v)

|U × U|
.

• ditπ(u, v) is the degree of distinction of (u, v), and it is
interpreted as the capacity of π to distinguish u and v by
means of its fuzzy sets π1, . . . , πn.

• Formally,

ditπ(u, v) = max{|πi (u)− πi (v)| s.t. i ∈ {1, . . . , n}}.

Proposition:
If π is made of classical sets, then H(π) is the logical entropy of
a standard partition.



Lower and upper entropy of fuzzy orthopartitions

Let O be a fuzzy orthopartition of U.

• Lower entropy of O: H∗(O) = min{H(π) | π ∈ ΠO},
• Upper entropy of O: H∗(O) = max{H(π) | π ∈ ΠO}.

They measure the quantity of information contained in O (the
capacity of O to distinguish elements of U by means of its
classes.)

The interval IO = [h∗(O), h∗(O)] is an entropy measure too.



Example of upper and lower entropies

Suppose that (µ1, ν1), (µ2, ν2), and (µ3, ν3)

• express the interest in three topics T1,T2, and T3 of three
different groups u, v , and z of users of a social network;

• form a fuzzy orthopartition O of {u, v , z}.

µ1 ν1 µ2 ν2 µ3 ν3
u 0.3 0.2 0.4 0.3 0 0.7
v 0.2 0.4 0.3 0.2 0.3 0.3
z 0 0.5 0.3 0.4 0.6 0.2

The lower and upper entropies of O are

H∗(O) = 0.13 and H∗(O) = 0.31.

They measure how much the interests of u, v , and z diverge
(valued w.r.t. {T1,T2,T3}).

Hence, they diverge with a degree between 0.13 and 0.31.



How to compute the lower and upper entropy

1 The problem to find π∗ and π∗ can be transformed in a
constrained optimization problem (finding the
maximum and minimum points of a function subject to
a pair of constraints).

2 It is converted into a linear programming problem.

3 The optimal solutions can be computed by using one
of the standard techniques in linear programming like
the Simplex method.

Stefania Boffa and Davide Ciucci. ”Logical entropy and ag-
gregation of fuzzy orthopartitions.” Fuzzy Sets and Systems
455 (2023): 77-101.



An ordering on fuzzy orthopartitions

Ordering ≤ on intuitionistic fuzzy sets

Let A1 = (µ1, ν1) and A2 = (µ2, ν2) be intuitionistic fuzzy
sets.

A1 ≤ A2 iff µ1(u) ≤ µ2(u) and ν2(u) ≤ ν1(u), ∀ u ∈ U.

A1 is less fuzzy than A2, i.e. A2 is closer than A1 to a fuzzy set
because it contains less uncertainty.

Extension of ≤ on fuzzy orthopartition

Let O1 and O2 be fuzzy orthopartitions.

O1 ⪯ O2 iff (µ1, ν1)i ≤ (µ2, ν2)i , ∀ i ∈ {1, . . . , n}.



If O1 ⪯ O2 then

• O1 is less fuzzy than O2;
O2 is closer than O1 to a Ruspini partition because
it contains less uncertainty.

• O2 is a refinement of O1;
in a dynamic situation, we can imagine O2 as an
evolution of O1 once more information is known
about the elements of the universe U.

• Monotonicity: I(O1) ⊆ I(O2);
(I(O1) is a closed subinterval of I(O2));
A fuzzy orthpartition with a lower entropy is closer
to a Ruspini partition.



Conclusions and future directions
Fuzzy orthopartitions have been introduced to represent generalized
partitions, according to the need of considering classification in
presence of uncertainty and vagueness.

In the future, we intend to

• extract fuzzy orthopartitions from data (using the
correspondence between fuzzy orthopartitions and credal
partitions and existing method to generate credal partitions
from data);

• compare the existing measures of uncertainty in the setting
of credal and fuzzy orthopartitions;

• compare fuzzy orthopartitions with other generalized
partitions (three-way fuzzy partitions);

• define fuzzy relations with uncertainty that are equivalent to
fuzzy orthopartitions (similarly to the connection between
standard partitions and equivalence relations);

• view fuzzy orthopartitions as contingency table by giving a
new semantics to intuitionistic fuzzy sets in terms of relative
frequencies (work in progress).



Thanks for the attention!


